搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器

孙淑鹏 程用志 罗辉 陈浮 李享成

引用本文:
Citation:

基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器

孙淑鹏, 程用志, 罗辉, 陈浮, 李享成

Compact broadband bandpass filter with wide stopband based on halberd-shaped spoof surface plasmon polariton

Sun Shu-Peng, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了一种基于戟形人工表面等离激元(spoof surface plasmon polaritons, SSPPs)的具有宽频带外抑制特性的紧凑型宽带带通滤波器. 设计的滤波结构是通过在基板底层蚀刻周期性的戟形槽和在顶层加载带有月牙形贴片的微带到槽线过渡结构实现的. 与传统的I形SSPPs相比, 戟形SSPPs具有更好的慢波特性, 基于戟形SSPPs设计的带通滤波器可以实现更紧凑的结构. 设计的滤波器通带的上下截止频率可以分别通过调整SSPPs结构和微带到槽线过渡结构来调节. 仿真结果表明, 宽带带通滤波器中心频率为2.85 GHz, 相对带宽为130%, 通带内的回波损耗优于–10 dB, 在5.6—20.0 GHz之间具有极强的–40 dB带外抑制. 设计的宽带带通滤波器结构尺寸紧凑, 仅为1.08λg × 0.39λg, 其中λg是中心频率处的波长. 为了验证宽带带通滤波器的有效性, 采用传统的印刷电路板技术加工了宽带带通滤波器. 测量结果与仿真结果吻合较好, 验证了设计的可行性. 本文所提出的宽带带通滤波器显示了在微波频率下开发SSPPs功能器件和电路的良好前景.
    In this paper, a compact broadband bandpass filter with wide out-of-band rejection characteristics based on halberd-shaped spoof surface plasmon polariton (SSPP) is proposed. The filtering structure is achieved by etching a periodic halberd-shaped groove at the bottom of the substrate and a microstrip-to-slot line transition with a crescent-shaped patch at the top. Compared with the traditional dumbbell-shaped SSPP, the halberd-shaped SSPP has good slow-wave property, and the designed bandpass filter based on halberd-shaped SSPP can achieve a more compact size. The upper cutoff frequency and lower cutoff frequency of the passband can be adjusted by regulating the SSPP structure and the transition structure from microstrip-to-slot line, respectively. The simulation results show that the center frequency of broadband bandpass filter is 2.85 GHz, with the relative bandwidth of 130%, and the return loss in the passband is better than –10 dB, and the extreme strong out-of-band rejection of –40 dB from 5.6 GHz to 20.0 GHz. The size of the broadband bandpass filter is compact, only 1.08λg × 0.39λg, where λg is the wavelength at the center frequency. In order to verify the effectiveness of the wideband bandpass filter, the traditional printed circuit board technology is used to fabricate the wideband bandpass filter. The measurement results are in good agreement with the simulation results, verifying the feasibility of the design. The proposed broadband bandpass filter shows promising prospects for developing SSPP functional devices and circuits at microwave frequencies.
      通信作者: 程用志, chengyz@wust.edu.cn
    • 基金项目: 湖北省自然科学基金创新群体项目 (批准号: 2020CFA038)和湖北省重点研发计划(批准号: 2020BAA028)资助的课题.
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn
    • Funds: Project supported by the Natural Science Foundation Innovation Group Project of Hubei Province, China (Grant No. 2020CFA038) and the Key R&D Project of Hubei Province, China (Grant No. 2020BAA028).
    [1]

    Noura A, Benaissa M, Abri M, Badaoui H, Vuong T H, Tao J 2019 Microw. Opt. Techn. Lett. 61 1473Google Scholar

    [2]

    Shen G X, Che W Q, Feng W J, Shi Y R, Shen Y M, Xu F 2021 IEEE Trans. Circuits Syst. II 68 1778Google Scholar

    [3]

    兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209Google Scholar

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209Google Scholar

    [4]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [5]

    Liao Z, Zhao J, Pan B C, Shen X P, Cui T J 2014 J. Phys. D 47 315103Google Scholar

    [6]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 物理学报 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar

    [7]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 64 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402Google Scholar

    [8]

    Chen P, Li L P, Yang K, Chen Q 2018 IEEE Microw. Wirel. Compon. Lett. 28 984Google Scholar

    [9]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165

    [10]

    Wang J, Zhao L, Hao Z C, Shen X, Cui T J 2019 Opt. Lett 44 3374Google Scholar

    [11]

    Kianinejad A, Chen Z N, Qiu C W 2015 IEEE Trans. Microw. Theory Tech. 63 1817Google Scholar

    [12]

    Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Cui T J 2016 IEEE Trans. Antennas Propagat. 64 5181Google Scholar

    [13]

    Wang J, Zhao L, Hao Z C 2019 IEEE Access 7 35089Google Scholar

    [14]

    Guan D F, You P, Zhang Q F, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar

    [15]

    Moznebi A R, Afrooz K, Arsanjani A 2022 Int. J. Electron. Commun. 145 154084Google Scholar

    [16]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [17]

    Guan D F, You P, Zhang Q F, Yang Z B, Liu H W, Yong S W 2018 IEEE Trans. Microw. Theory Tech. 66 2946Google Scholar

    [18]

    Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar

    [19]

    Liu H, Wang Z B, Zhang Q F, Ma H F, Ren B P, Wen P 2019 IEEE Access 7 44212Google Scholar

    [20]

    Guo Y J, Xu K D, Liu Y H, Tang X H 2018 IEEE Access 6 10249Google Scholar

  • 图 1  (a)矩形SSPP单元; (b) I形SSPP单元; (c)戟形SSPP单元; (d)色散曲线的比较

    Fig. 1.  (a) Rectangular-shaped SSPP unit cell; (b) I-shaped SSPP unit cell; (c) halberd-shaped SSPP unit cell; (d) comparison of dispersion curves.

    图 2  宽带带通滤波器的示意图 (a)顶视图; (b)底视图

    Fig. 2.  Schematic of broadband bandpass filter: (a) Top view; (b) bottom view.

    图 3  (a)宽带带通滤波器的示意图(N = 1, 2, 3, 4); (b)不同SSPP单元数量下的宽带带通滤波器的S参数

    Fig. 3.  (a) Schematic of broadband bandpass filter (N = 1, 2, 3, 4); (b) S-parameters of broadband bandpass filters with different SSPP element numbers.

    图 4  模拟了(a) 0.5 GHz, (b) 3.0 GHz和(c) 7.0 GHz处的宽带带通滤波器z分量电场分布

    Fig. 4.  Simulated z-component electric field distributions of the broadband bandpass filter at (a) 0.5 GHz, (b) 3.0 GHz, and (c) 7.0 GHz.

    图 5  (a)宽带带通滤波器的等效LC电路; (b)电磁仿真和等效LC电路S参数的对比曲线

    Fig. 5.  (a) Equivalent LC circuit of broadband bandpass filter; (b) comparison of electromagnetic simulation and equivalent LC circuit S-parameters.

    图 6  (a)不同戟形槽深度下戟形SSPP的色散曲线; (b)不同戟形槽深度下宽带带通滤波器的透射系数(S21)

    Fig. 6.  (a) Dispersion curves of halberd-shaped SSPP at different depth of halberd grooves; (b) transmission coefficient (S21) of broadband bandpass filter at different depth of halberd grooves.

    图 7  (a)不同开槽线宽度下戟形SSPP的色散曲线; (b)不同开槽线宽度下宽带带通滤波器的透射系数(S21)

    Fig. 7.  (a) Dispersion curves of halberd-shaped SSPP at different slotline widths; (b) transmission coefficients (S21) of broadband bandpass filters at different slotline widths.

    图 8  模拟了不同月牙槽rd下宽带带通滤波器的透射系数(S21)

    Fig. 8.  Transmission coefficient (S21) of broadband bandpass filter under different crescent rd.

    图 9  (a), (b)制备的宽带带通滤波器的正面和背面视图; (c)模拟和实测的S参数的对比曲线

    Fig. 9.  (a), (b) Top view and bottom view of the broadband bandpass filter; (c) comparison of simulated and measured S-parameters.

    图 10  模拟了不同介质基板下宽带带通滤波器的S参数(S21S11).

    Fig. 10.  Simulated S-parameters (S21 and S11) of wideband bandpass filters on different dielectric substrates

    表 1  与参考文献中带通滤波器的性能对比(FBW, 分数带宽)

    Table 1.  Comparison of our proposed bandpass filters with bandpass filters in references (FBW, fractional bandwidth).

    参考文献频率范围FBW/%带外抑制尺寸(λg×λg)
    [8]7.3—11.242.2–40 dB@11.8—19.8 GHz2.85×0.67
    [15]1.18—6.18135.8–31 dB@6.9—18.0 GHz1.83×0.46
    [17]8—1667.0–7 dB@16.2—17.0 GHz2.64×0.29
    [18]8.0—13.551.0–40 dB@14.0—19.5 GHz1.87×0.63
    [19]2.1—8.016.8–30 dB@8.9—20.0 GHz1.47×0.42
    [20]1.1—7.3147.6–30 dB@7.5—20.0 GHz2.95×0.89
    本文1.0—4.7130.0–40 dB@5.6—20.0 GHz1.08×0.39
    下载: 导出CSV
  • [1]

    Noura A, Benaissa M, Abri M, Badaoui H, Vuong T H, Tao J 2019 Microw. Opt. Techn. Lett. 61 1473Google Scholar

    [2]

    Shen G X, Che W Q, Feng W J, Shi Y R, Shen Y M, Xu F 2021 IEEE Trans. Circuits Syst. II 68 1778Google Scholar

    [3]

    兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209Google Scholar

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209Google Scholar

    [4]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [5]

    Liao Z, Zhao J, Pan B C, Shen X P, Cui T J 2014 J. Phys. D 47 315103Google Scholar

    [6]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 物理学报 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar

    [7]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 64 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402Google Scholar

    [8]

    Chen P, Li L P, Yang K, Chen Q 2018 IEEE Microw. Wirel. Compon. Lett. 28 984Google Scholar

    [9]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165

    [10]

    Wang J, Zhao L, Hao Z C, Shen X, Cui T J 2019 Opt. Lett 44 3374Google Scholar

    [11]

    Kianinejad A, Chen Z N, Qiu C W 2015 IEEE Trans. Microw. Theory Tech. 63 1817Google Scholar

    [12]

    Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Cui T J 2016 IEEE Trans. Antennas Propagat. 64 5181Google Scholar

    [13]

    Wang J, Zhao L, Hao Z C 2019 IEEE Access 7 35089Google Scholar

    [14]

    Guan D F, You P, Zhang Q F, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar

    [15]

    Moznebi A R, Afrooz K, Arsanjani A 2022 Int. J. Electron. Commun. 145 154084Google Scholar

    [16]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [17]

    Guan D F, You P, Zhang Q F, Yang Z B, Liu H W, Yong S W 2018 IEEE Trans. Microw. Theory Tech. 66 2946Google Scholar

    [18]

    Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar

    [19]

    Liu H, Wang Z B, Zhang Q F, Ma H F, Ren B P, Wen P 2019 IEEE Access 7 44212Google Scholar

    [20]

    Guo Y J, Xu K D, Liu Y H, Tang X H 2018 IEEE Access 6 10249Google Scholar

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器. 物理学报, 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计. 物理学报, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [8] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [12] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [18] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [19] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [20] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
计量
  • 文章访问数:  4641
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2022-12-27
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回