-
通过配体后处理法向CsPbBr3 钙钛矿纳米晶中加入油胺-十四烷基膦酸(OLA-TDPA)的混合配体获得了CsPbBr3-Cs4PbBr6混合材料. 在最佳比例下(CsPbBr3, TDPA与OLA的物质的量的比为1∶1∶15)制备的CsPbBr3-Cs4PbBr6钙钛矿纳米晶混合相的光致发光量子产率可达78%, 荧光寿命长达476 ns, 且其在室温环境下保持稳定性至少25 d, 在293 K和328 K之间的5个加热-冷却循环中具有良好的热稳定性. 混合纳米晶的形成经历了表面钝化/溶解和重结晶两个阶段: 在第1阶段(t ≤ 1 h), OLA-TDPA混合配体形成了(RNH3)2PO3 X型配体与纳米晶表面发生配体交换, 交换后的新配体能与纳米晶表面的Pb2+紧密的结合且含量较高, 降低了纳米晶表面的缺陷态密度, 提高了CsPbBr3类球形钙钛矿纳米晶的量子产率和荧光寿命; 在第2阶段, 由于部分PbBr2脱离CsPbBr3 NCs而使其发生了重结晶, 生成了少量六方相Cs4PbBr6纳米晶, 最终获得CsPbBr3和Cs4PbBr6双相共存的纳米晶, 从而提高了纳米晶的稳定性. 本工作对推动高效稳定的钙钛矿纳米晶的应用具有一定参考价值.
-
关键词:
- 钙钛矿纳米晶 /
- CsPbBr3-Cs4PbBr6混合相 /
- 高效稳定 /
- 配体交换 /
- 溶解重结晶
CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are prepared by adding the mixture ligand of oleylamine and tetradecyl-phosphonic acid (OLA-TDPA) to CsPbBr3 perovskite nanocrystals through ligand post-treatment. The structure, the morphology, optical property and the stability of CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are characterized by X-ray diffraction, transmission electron microscopy (high-resolution TEM), UV-vis spectrophotometer, fluorescence spectrophotometer, and transient fluorescence spectrophotometer. The as-obtained nanocrystals have a high photoluminescence quantum yield of 78% and long fluorescence lifetime of 476 ns when prepared at the optimal molar ratio of CsPbBr3, TDPA and OLA (1∶1∶15). Moreover, the nanocrystal is quite stable at room temperature for at least 25 days, and has a good thermal stability in five heating-cooling cycles at temperature in a range between 293 K and 328 K. The formation of dual-phase nanocrystals go through two stages of surface passivation/dissolution and recrystallization to generate CsPbBr3-Cs4PbBr6 nanocrystals. In the first stage (t ≤ 1 h), the m OLA-TDPA mixing ligand can form (RNH3)2PO3 X type ligand and exchanges with [RNH3]+-[RCOO]– at the surface of CsPbBr3 nanocrystals, which can effectively passivate surface defects by strong interaction with Pb2+ and high ligand content at surface, thus improving the quantum yield and fluorescence life of CsPbBr3 nanocrystals with spherical shape. In the second stage, with the increase of reaction time, PbBr2 partially dissolves from the surface of CsPbBr3 nanocrystals, then some CsPbBr3 nanocrystals transform into lead-depleted Cs4PbBr6 nanocrystals with hexagonal phase, thus improving the stability of nanocrystals. This work has a certain reference value for promoting the applications of high efficient and stable perovskite nanocrystals.-
Keywords:
- perovskite nanocrystals /
- CsPbBr3-Cs4PbBr6 mixture /
- highly efficient and stable /
- ligand exchange /
- dissolution-recrystallization
[1] Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar
[2] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[3] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar
Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar
[4] Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar
[5] Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar
[6] Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar
[7] Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar
[8] 林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar
Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar
[9] Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar
[10] Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar
[11] De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar
[12] Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar
[13] Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar
[14] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar
[15] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar
[16] Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar
[17] Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar
[18] Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar
[19] Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar
[20] Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar
[21] Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar
[22] Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar
[23] Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar
[24] Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar
[25] Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar
[26] Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar
[27] Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar
[28] Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar
[29] Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar
[30] Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar
[31] Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar
[32] Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar
[33] Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar
[34] Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar
[35] De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar
[36] Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar
[37] Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar
[38] Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar
[39] Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar
[40] Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar
-
图 3 (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)
Fig. 3. (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.
图 4 (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化
Fig. 4. Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).
图 6 OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱
Fig. 6. Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).
表 1 CsPbBr3 NCs和OLA-TDPA-PNCs的荧光寿命拟合
Table 1. Lifetime and fractional contribution of different decay channels for samples of CsPbBr3 NCs and OLA-TDPA-PNCs.
Sample τ1/ns τ2/ns τ3/ns Knr/(106 s–1) Kr/(106 s–1) Knr/Kr τavg/ns PLQY/% CsPbBr3 NCs 6.83 42.13 277.42 5.48 0.97 5.65 155 15 OLA-TDPA-PNCs 12.56 79.07 824.81 0.47 1.64 0.29 476 78 -
[1] Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar
[2] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[3] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar
Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar
[4] Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar
[5] Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar
[6] Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar
[7] Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar
[8] 林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar
Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar
[9] Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar
[10] Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar
[11] De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar
[12] Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar
[13] Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar
[14] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar
[15] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar
[16] Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar
[17] Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar
[18] Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar
[19] Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar
[20] Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar
[21] Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar
[22] Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar
[23] Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar
[24] Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar
[25] Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar
[26] Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar
[27] Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar
[28] Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar
[29] Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar
[30] Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar
[31] Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar
[32] Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar
[33] Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar
[34] Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar
[35] De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar
[36] Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar
[37] Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar
[38] Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar
[39] Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar
[40] Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar
计量
- 文章访问数: 4778
- PDF下载量: 120
- 被引次数: 0