搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双极化编码超表面生成的双模式轨道角动量

韩俊杰 钱思贤 朱传名 黄志祥 任信钢 程光尚

引用本文:
Citation:

基于双极化编码超表面生成的双模式轨道角动量

韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚

Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface

Han Jun-Jie, Qian Si-Xian, Zhu Chuan-Ming, Huang Zhi-Xiang, Ren Xin-Gang, Cheng Guang-Shang
PDF
HTML
导出引用
  • 本文提出了一个超薄的4-bit双极化编码超表面, 通过正交线极化波的独立操控来实现双模式涡旋波束的生成. 提出的超表面从顶至下依次由“H”形的金属贴片、介质基板层和金属接地层组成. 为了证明所提出的概念, 设计并制造了一个编码超表面. 制造的编码超表面, 在正交线极化波的入射下被设计为携带不同拓扑荷的涡旋波束, 工作中心频率为24.0 GHz. 实验测试结果表明, 理论设计与仿真结果吻合, 从而证实了所提出的4-bit双极化编码超表面具有生成双模式涡旋波束的能力. 这种超薄双模式涡旋生成器有着广泛的应用前景, 特别是在图像和微波领域的无线通信系统中.
    In this paper, a dual-polarization 4-bit coding metasurface is proposed to achieve the flexible manipulation of different polarization electromagnetic wave reflection angles and the generation of dual-mode vortex beams by independent manipulation of orthogonal linearly polarized waves. The proposed metasurface is composed of an H-type metal patch, dielectric substrate, and metal grounding layer from top to bottom. To prove the proposed concept, we design and fabricate four coding metasurfaces based on the superposition theorem and holographic theory. One of the coding metasurfaces is designed to verify the ability to manipulate the beam angle, and each of the other three coding metasurfaces is designed to carry a vortex beam with different topological charges under orthogonal linearly polarized waves with a central frequency of 24 GHz. The experimental results show that the theoretical design is highly consistent with the simulation results. Therefore, it is verified that our proposed 4-bit dual-polarization coding metasurface has a strong and flexible ability to manipulate the beam reflection angle and generate a high-performance dual-mode vortex beam antenna. Because of the wide application prospect of vortex beams in the communication field, we have reason to believe that the proposed ultra-thin dual-mode vortex generator will have potential applications in wireless communication systems in the fields of images and microwaves.
      通信作者: 黄志祥, zxhuang@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901002, 61971001, U20A20164, 61801299)、安徽省自然科学基金(批准号: 1908085QF258)和安徽省高校协同创新项目(批准号: GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2020-037)资助的课题.
      Corresponding author: Huang Zhi-Xiang, zxhuang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901002, 61971001, U20A20164, 61801299), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QF258), and the University Synergy Innovation Program of Anhui Province, China (Grant Nos. GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2020-037).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Thidé B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [3]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [4]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [5]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [6]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [7]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [8]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [9]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [10]

    Tamburini F, Thidé B, Mari E, Sponselli A, Bianchini A, Romanato F 2012 New J. Phys. 14 118002Google Scholar

    [11]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [12]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [14]

    Meng X S, Wu J J, Wu Z S, Qu T, Yang L 2018 Opt. Express 26 23185Google Scholar

    [15]

    Meng X S 2019 Appl. Phys. Lett. 114 093504Google Scholar

    [16]

    Yu S X, Li L, Shi G M, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [17]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science. 339 1232009Google Scholar

    [18]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [19]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [20]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antenn. Propag. 65 396Google Scholar

    [21]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

  • 图 1  (a) 反射型超表面等效电路模型; (b) 亚波长结构及等效电路模型

    Fig. 1.  Schematic of the equivalent circuit for (a) reflective metasurface and (b) subwavelength structure.

    图 2  (a)单元结构的顶部视图; (b)单元结构的侧视图; (c)单元“1/0”在不同极化下的反射相位和幅度

    Fig. 2.  (a) Top view of unit structure; (b) side view of unit structure; (c) reflection phase and amplitude of unit “1/0” under different polarizations.

    图 3  由16个基本单元结构组成的2-bit双极化编码超表面

    Fig. 3.  The structure consists of 16 basic units composed of 2-bit dual-polarization coding metasurface.

    图 4  由256个基本单元结构组成的4-bit双极化编码超表面

    Fig. 4.  The structure consists of 256 basic units composed of 4-bit dual-polarization coding metasurface.

    图 5  由16个各向同性单元结构尺寸组成的4-bit离散反射相位曲线

    Fig. 5.  A 4-bit discrete reflection phase curve composed of 16 isotropic unit structures of various sizes.

    图 6  (a), (b) 携带拓扑荷L为2, 利用1-bit和4-bit构造的离散编码相位分布; (c), (d) 拓扑荷L为2的二维涡旋散射曲线图, 及其近场对应的幅值和相位; (e) 不同bit构造的2阶OAM谱分布对比图

    Fig. 6.  (a), (b) Discrete encoded phase distributions with topological charge L=2, constructed using 1-bit and 4-bit encoding schemes, respectively; (c), (d) two-dimensional far-field scattering patterns of the L=2 vortex beams; (e) comparison of 2nd-order orbital angular momentum spectra constructed using different bit encoding.

    图 7  (a), (c), (e) x极化入射时携带拓扑荷为1, 3, 5的离散编码相位分布; (b), (d), (f) y极化入射时携带拓扑荷为2, 4, 6的离散编码相位分布; (g), (i), (k) x极化入射时携带拓扑荷为1, 3, 5的涡旋电场强度辐射图; (h), (j), (l) y极化入射时携带拓扑荷为2, 4, 6的涡旋电场强度辐射图; (m), (o), (q) x极化入射时携带拓扑荷为1, 3, 5的涡旋电场相位分布图; (n), (p), (r) y极化入射时携带拓扑荷为2, 4, 6的涡旋电场相位分布图

    Fig. 7.  (a), (c), (e) Phase distributions of discrete coding with topological charges of 1, 3 and 5 under x-polarization incidence; (b), (d), (f) phase distributions of discrete coding with topological charges of 2, 4 and 6 under y-polarization incidence; (g), (i), (k) radiation patterns of vortex electric field intensity with topological charges of 1, 3 and 5 under x-polarization incidence; (h), (j), (l) radiation patterns of vortex electric field intensity with topological charges of 2, 4 and 6 under y-polarization incidence; (m), (o), (q) phase distribution patterns of the vortex electric field with topological charges 1, 3 and 5 under x-polarization incidence; (n), (p), (r) phase distribution patterns of the vortex electric field with topological charges 2, 4 and 6 under y-polarization incidence.

    图 8  (a) 双模式涡旋器件的实物拍摄图, 且分别携带拓扑荷1阶和2阶; (b) 实际的测试环境; (c), (d) y极化入射, 在24 GHz时携带拓扑荷为2的仿真和实测涡旋电场强度辐射图; (e)(f) x极化入射, 在24 GHz时携带拓扑荷为1的仿真和实测涡旋电场相位分布图; (g), (h) y极化入射, 在24 GHz时携带拓扑荷为2的仿真和实测涡旋电场相位分布图; (i), (j) y极化入射, 在23 GHz, 25 GHz时携带拓扑荷为2的实测涡旋电场强度辐射图; (k), (l)样品M1在xy极化下实际测试的OAM谱纯度

    Fig. 8.  (a) Photography of fabricated sample; (b) the real measurement environment; (c), (d) simulated and measured radiation patterns of vortex electric field intensity at 24 GHz with topological charges of 2 under y-polarization incidence; (e), (f) simulated and measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 1 under x-polarization incidence; (g), (h) simulated and measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 2 under y-polarization incidence; (i), (j) measured radiation patterns of vortex electric field intensity at 23 and 25 GHz with topological charges of 2 under y-polarization incidence; (k), (l) actual OAM purity measurements of sample M1 under x and y polarizations, respectively.

    表 1  2-bit双极化编码超表面单元结构的几何参数, 符号“/”后的数字代表不同的数字态

    Table 1.  Geometric parameters of 2-bit dual-polarization coding metasurface unit structure, where the number following the symbol “/” represents different digital states.

    参数a/00w1/10w2/10h1/10h2/10a/11w1/20w2/20h1/20h2/20a/22w1/30w2/30h1/30h2/30
    值/mm514.953.612.53.3914.953.392.53.2314.953.112.5
    参数 a/33w1/21w2/21h1/21h2/21 w1/31w2/31h1/31h2/31w1/32w2/32h1/32h2/32
    值/mm3.051.23.293.62.81.23.433.32.81.353.13.452.6
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Thidé B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [3]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [4]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [5]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [6]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [7]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [8]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [9]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [10]

    Tamburini F, Thidé B, Mari E, Sponselli A, Bianchini A, Romanato F 2012 New J. Phys. 14 118002Google Scholar

    [11]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [12]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [14]

    Meng X S, Wu J J, Wu Z S, Qu T, Yang L 2018 Opt. Express 26 23185Google Scholar

    [15]

    Meng X S 2019 Appl. Phys. Lett. 114 093504Google Scholar

    [16]

    Yu S X, Li L, Shi G M, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [17]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science. 339 1232009Google Scholar

    [18]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [19]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [20]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antenn. Propag. 65 396Google Scholar

    [21]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [5] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [6] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [7] 陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞. 金属目标对贝塞尔涡旋波束的近场电磁散射特性. 物理学报, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [8] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [9] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [10] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [11] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [12] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [13] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [16] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
计量
  • 文章访问数:  2748
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-10
  • 刊出日期:  2023-07-20

/

返回文章
返回