搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光维持等离子体多物理场耦合模型与仿真

张东荷雨 刘金宝 付洋洋

引用本文:
Citation:

激光维持等离子体多物理场耦合模型与仿真

张东荷雨, 刘金宝, 付洋洋

Multiphysics modeling and simulations of laser-sustained plasmas

Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang
PDF
HTML
导出引用
  • 激光维持等离子体作为一种光照强度高、光谱范围宽、发光稳定的新型辐射光源, 在光学检测(半导体晶圆检测)等领域具有重要的应用价值. 本文回顾了激光维持等离子体研究的发展历程, 介绍了其基本物理过程及数学描述方程, 建立了基于多物理场耦合的二维流体模型. 利用该模型研究了激光在等离子体中的传播过程, 探讨了激光维持等离子体的初始演化过程、能量注入机制、稳态特性及不稳定性等关键问题. 通过与高气压氙气等离子体实验结果对比, 确定了仿真模型的有效性. 相关仿真结果有助于深入理解激光维持等离子体的底层物理机制, 为实现光源系统设计、多参数优化提供理论依据.
    Laser-sustained plasma (LSP), which can be utilized for a novel radiation light source, has advantages such as high irradiance, broad spectral range, and stable emission, demonstrating significant applications in wafer inspection in the field of the semiconductor industry. This paper revisits the historical development of LSP research and introduces fundamental physical processes in LSP. The mathematical description equations for LSP and methods of calculating plasma parameters are provided, thereby a time-dependent two-dimensional fluid model is established by taking into consideration a laser-thermal-hydrodynamic coupling effect. The propagation of the laser in plasma is investigated based on the established model, and the fundamental processes in LSP, including the initial evolution process, laser energy deposition, steady-state characteristics, and instability, are explored. The effectiveness of the simulation model is confirmed through comparing with the experimental results of high-pressure Xe LSP. The findings indicate that the mode, power, F-number of incident lasers, as well as parameters including components, pressure, and flow velocity of gas, can all affect the steady-state properties of LSPs. Under the identical power and F-number conditions, Gaussian mode laser and annular mode laser both produce LSPs with different shapes and positions. Notably, under the conditions of high-power annular laser incidence, large laser F-number, and high flow velocity, the simulation results reveal temporal and spatial instability in LSP. These simulation results contribute significantly to a more in-depth understanding of the underlying physical mechanisms of the LSP. Furthermore, they provide a theoretical basis for designing the light source system and optimizing the multiple parameters. The influence of laser parameters on LSP properties elucidated in this study not only advances the fundamental understanding of LSP but also offers crucial insights for designing and optimizing the light source systems in various applications, particularly in the field of optical detection for semiconductor wafer inspection.
      通信作者: 付洋洋, fuyangyang@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52277154)资助的课题.
      Corresponding author: Fu Yang-Yang, fuyangyang@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52277154).
    [1]

    Raizer Y P 1970 J. Exp. Theor. Phys. 31 1148

    [2]

    Raizer Y P 1991 Gas Discharge Physics (Heidelberg: Springer) p415

    [3]

    Raizer Y P 1980 Sov. Phys. Usp. 23 789Google Scholar

    [4]

    Kantrowitz A 1972 Astronaut. Aeronaut. 10 74

    [5]

    Cremers D A, Archuleta F L, Martinez R J 1985 Spectrochim. Acta, Part B 40 665Google Scholar

    [6]

    Chen X, Mazumder J 1989 J. Appl. Phys. 66 5756Google Scholar

    [7]

    Bezel I, Delgado G, Derstine M, Gross K, Solarz R, Shchemelinin A, Shortt D 2015 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 10–15, 2015 pp1–2

    [8]

    Islam M, Ciaffoni L, Hancock G, Ritchie G A 2013 Analyst 138 4741Google Scholar

    [9]

    Horne S, Smith D, Besen M, Partlow M, Stolyarov D, Zhu H, Holber W 2010 Next-Generation Spectroscopic Technologies III (SPIE) Orlando, USA, April 5–6, 2010 pp105–111

    [10]

    Bezel I, Zvedenuk L B, Stepanov A E, KRerikh V, Potapkin B V US Patent US11776804 B2[2023-10-03

    [11]

    Bezel I, Zvedenuk L B, Stepanov A E, Torkaman A 2023 US Patent 2023/0053035 A1 [2023-02-16

    [12]

    Generalov N A, Zimakov V P, Kozlov G I, Masyukov V A, Raizer Y P 1970 Sov. J. Exp. Theor. Phys. 11 302

    [13]

    王海兴, 陈熙 2004 工程热物理学报 25 S1

    Wang H X, Chen X 2004 J. Eng. Thermophys. 25 S1

    [14]

    郑志远, 鲁欣, 张杰, 郝作强, 远晓辉, 王兆华 2005 物理学报 54 192Google Scholar

    Zheng Z Y, Lu X, Zhang J, Hao Z Q, Yuan X H, Wang Z H 2005 Acta. Phys. Sin. 54 192Google Scholar

    [15]

    Krier H, Mazumder J, Rockstroh T, Bender T, Glumb R 1986 AIAA J. 24 1656Google Scholar

    [16]

    Shi Z, Yang S, Yu F, Yu X 2023 Opt. Express 31 6132Google Scholar

    [17]

    Akarapu R, Nassar A R, Copley S M, Todd J A 2009 J. Laser Appl. 21 169Google Scholar

    [18]

    Fowler M C, Smith D C 1975 J. Appl. Phys. 46 138Google Scholar

    [19]

    Zimakov V P, Kuznetsov V A, Solovyov N G, Shemyakin A N, Shilov A O, Yakimov M Y 2016 Plasma Phys. Rep. 42 68Google Scholar

    [20]

    Hu Y, Wang X, Zuo D 2022 Vacuum 203 111229Google Scholar

    [21]

    Gerasimenko M V, Kozlov G I, Kuznetsov V A 1983 Sov. J. Quantum Electron. 13 438Google Scholar

    [22]

    Welle R, Keefer D, Peters C 1987 AIAA J. 25 1093Google Scholar

    [23]

    Jeng S M, Keefer D 1989 J. Propul. Power 5 577Google Scholar

    [24]

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001Google Scholar

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001Google Scholar

    [25]

    Jeng S M, Keefer D R 1987 J. Propul. Power 3 255Google Scholar

    [26]

    Batteh J H, Keefer D R 1974 IEEE Trans. Plasma Sci. 2 122Google Scholar

    [27]

    Glumb R J, Krier H 1984 J. Spacecr. Rockets 21 70Google Scholar

    [28]

    Molvik G A, Choi D, Merkle C L 1985 AIAA J. 23 1053Google Scholar

    [29]

    Merkle C L, Molvik G A, Shaw E J H 1986 J. Propul. Power 2 465Google Scholar

    [30]

    Jeng S M, Keefer D R, Welle R, Peters C E 1987 AIAA J. 25 1224Google Scholar

    [31]

    Conrad R, Raizer Y P, Sarzhikov S T 1996 AIAA J. 34 1584Google Scholar

    [32]

    Rafatov I R, Yedierler B, Kulumbaev E B 2009 J. Phys. D: Appl. Phys. 42 055212Google Scholar

    [33]

    Keefer D R, Henriksen B B, Braerman W F 1975 J. Appl. Phys. 46 1080Google Scholar

    [34]

    Generalov N A, Zakharov A M, Kosynkin V D, Yakimov M Y 1986 Combust., Explos. Shock Waves 22 214Google Scholar

    [35]

    Rafatov I 2009 Phys. Lett. A 373 3336Google Scholar

    [36]

    Zimakov V P, Kuznetsov V A, Solovyov N G, Shemyakin A N, Shilov A O, Yakimov M Y 2017 J. Phys. Conf. Ser. 815 012003Google Scholar

    [37]

    Zimakov V P, Lavrentyev S, Solovyov N, Shemyakin A, Yakimov M A 2019 Physical-Chemical Kinetics in Gas Dynamics 19 1

    [38]

    Lavrentyev S Y, Solovyov N G, Shemyakin A N, Yu Yakimov M 2019 J. Phys. Conf. Ser. 1394 012012Google Scholar

    [39]

    Kotov M A, Lavrentyev S Y, Shemyakin A N, Solovyov N G, Yakimov M Y 2022 Plasma Sources Sci. Technol. 31 124002Google Scholar

    [40]

    王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203Google Scholar

    Wang H X, Sun S R, Chen S Q 2012 Acta. Phys. Sin. 61 195203Google Scholar

    [41]

    陈艳秋 2014 物理学报 63 205201Google Scholar

    Chen Y Q 2014 Acta. Phys. Sin. 63 205201Google Scholar

    [42]

    Gordon S, McBride B J 1994 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. part 1: Analysis. Tech. Rep. 95 N20180, NASA

    [43]

    Johnston T W, Dawson J M 1973 Phys. Fluids 16 722Google Scholar

    [44]

    Gilleron F, Piron R 2015 High Energy Density Phys. 17 219Google Scholar

    [45]

    Chapman S, Cowling T G 1995 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases (3rd Ed.) (Cambridge: Cambridge University Press) p167

    [46]

    Adibzadeh M, Theodosiou C E 2005 At. Data Nucl. Data Tables 91 8Google Scholar

    [47]

    Amdur I, Mason E 1958 Phys. Fluids 1 370Google Scholar

    [48]

    Miller J S, Pullins S H, Levandier D J, Chiu Y h, Dressler R A 2002 J. Appl. Phys. 91 984Google Scholar

    [49]

    Mason E, Munn R, Smith F J 1967 Phys. Fluids 10 1827Google Scholar

    [50]

    Tang K, Toennies J P 1984 J. Chem. Phys. 80 3726Google Scholar

    [51]

    Tang K, Toennies J P 1986 Z. Phys. D: At. Mol. Clusters 1 91Google Scholar

    [52]

    Monchick L 1959 Phys. Fluids 2 695Google Scholar

    [53]

    Hirschfelder J, Curtiss C, Bird R, Mayer M 1954 Molecular Theory of Gases and Liquids (New York: Wiley) pp1126–1127

    [54]

    Devoto R S 1967 Phys. Fluids 10 354Google Scholar

    [55]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [56]

    Horn K P 1966 Radiative Behavior of Shock Heated Argon Plasma Flows (Stanford: Stanford University) p35

    [57]

    杜世刚 1998 等离子体物理 (北京: 原子能出版社) 第162页

    Du S G 1998 Plasma Physics (Beijing: Atomic Press) p162

    [58]

    COMSOL Multiphysics® v. 6.0. cn.comsol.com. COMSOL AB, Stockholm, Sweden.

    [59]

    过增元, 赵文华 1986 电弧和热等离子体(北京: 科学出版社) 第141—157页

    Guo Z Y, Zhao W H 1986 Arc and Thermal Plasma (Beijing: Science Press) pp141–157

  • 图 1  LSP实验装置结构示意图

    Fig. 1.  Schematic diagram of the LSP experimental setup.

    图 2  $ {\rm{{CO_2}}} $激光条件下LSP中主要能量传递机制, 包括: 逆韧致辐射(ff)吸收; 自由-自由(ff)/自由-束缚(fb)辐射; 束缚-束缚(bb)辐射; 热扩散

    Fig. 2.  Main energy transfer processes of plasma sustained by $ {\rm{{CO_2}}} $ laser including bremsstrahlung absorption, free-free (ff)/free-bound (fb) emission, bound-bound (bb) emission, and thermal diffusion.

    图 3  不同压强的平衡状态下Xe气体组分

    Fig. 3.  Composition of Xe plasma at different pressures.

    图 4  $ 10.6{\text{ μm}} $ $ {\rm{{CO_2}}} $激光条件下不同压强Xe等离子体的吸收系数随温度变化

    Fig. 4.  Absorption coefficient of Xe plasmas with temperature at different pressures under the condition of $ 10.6{\text{ μm}} $ $ {\rm{{CO_2}}} $ laser.

    图 5  不同压强下Xe等离子体各参数随温度的变化 (a)恒压比热容; (b)黏滞系数; (c)热导率; (d)各项辐射损失功率密度

    Fig. 5.  Parameters of Xe plasmas scaling with temperature at different pressures: (a) Specific heat capacity; (b) viscosity; (c) thermal conductivity; (d) radiative loss power density.

    图 6  LSP模拟计算域设置

    Fig. 6.  Setup of the LSP computational domain.

    图 7  仿真得到典型的稳态Xe-LSP参数二维分布 (a)等温线分布; (b)速度流场分布

    Fig. 7.  Two-dimensional (2D) profiles of the steady-state Xe-LSP from the simulation results: (a) Temperature isotherm profile; (b) velocity streamline.

    图 10  高功率、高气体流速下产生的不稳定LSP. 图中结果的气体压强均为$ 10{\rm{\, {atm}}} $, 采用环形激光, 功率为$ 5000{\rm{\, {W}}} $, F数为$ f/3.5 $. 图(a)—(c)展示了入口流速设置为$ 10{\rm{\, {m/s}}} $产生的LSP在$ 3.6 $, $ 4.0$和$ 4.4{\rm{~{ms}}} $的二维温度分布; 图(d)—(f)展示了入口流速设置为$ 20{\rm{\, {m/s}}} $产生的LSP在$ 3.6$, $ 4.0$和$ 4.4{\rm{~{ms}}} $的二维温度分布

    Fig. 10.  Unstable LSP generated under the condition of high laser power and high gas velocity. The gas pressure for all the results is set to $ 10{\rm{\, {atm}}} $. The laser power is $ 5000{\rm{\, {W}}} $ and F-number equals to $ f/3.5 $. Panels (a)–(c) show the two-dimensional temperature distribution of the LSP when inlet velocity is set to $ 10{\rm{\, {m/s}}} $ at $ 3.6 $, $ 4.0 $, and $ 4.4{\rm{~{ms}}} $. Panels (d)–(f) show the two-dimensional temperature distribution of the LSP when inlet velocity is set to $ 20{\rm{\, {m/s}}} $ at $ 3.6 $, $ 4.0 $, and $ 4.4{\rm{~{ms}}} $.

    图 8  (a)相同功率下高斯模式与环形模式激光相对强度径向分布; (b), (c)激光模式对稳态LSP温度分布的影响, 分别为$ f/7 $条件下高斯光束与环形光束结果. 模拟条件为5 atm的Xe环境下, 入射激光功率为500 W, F数为$ f/7 $, 气体流速10 m/s

    Fig. 8.  (a) Radial distribution of relative laser intensity of Gaussian beam and annular beam at a same laser power; (b), (c) effects of laser mode on steady LSP temperature distribution, where (b) and (c) are the results of Gaussian beam and annular beam at $ f/7 $, respectively. Background gas: Xe, pressure: 5 atm, laser power: 500 W, F-number: $ f/7 $, velocity: 10 m/s.

    图 9  不同时刻LSP的温度分布图. 模拟条件为$ 5{\rm{\, {atm}}} $的Xe环境下, 入射激光功率为$ 500{\rm{\, {W}}} $, F数为$ f/7 $, 气体流速为$ 10{\rm{\, {m/s}}} $

    Fig. 9.  Temperature distributions of LSP at different times during laser propagation. Background gas: Xe, pressure: $ 5{\rm{\, {atm}}} $, laser power: $ 500{\rm{\, {W}}} $, F-number: $ f/7 $, velocity: $ 10{\rm{\, {m/s}}} $.

    表 1  输运系数与用于计算的碰撞积分

    Table 1.  Transport coefficients and the collision integrals used for calculation

    输运系数 用于计算的碰撞积分
    $ \mu_{\rm{{v}}} $ $ \varOmega^{\left({1, 1}\right)} $; $ \varOmega^{\left({2, 2}\right)} $
    $ k_{\rm{{T}}} $ $ \varOmega^{\left({1, s}\right)}, \, s = 1,\cdots, 5 $; $ \varOmega^{\left({2, s}\right)}, \, s = 2, 3, 4 $
    下载: 导出CSV

    表 2  Xe等离子体中粒子对相互作用对应的碰撞积分计算方法

    Table 2.  Calculation of collisional integrals corresponding to particle pair interactions in Xe plasmas.

    相互作用 计算方法 参考文献
    e-Xe 动量转移截面积分 [46]
    Xe-Xe 指数势能: $ A = 311,\; \rho = 0.208 $ [47]
    Xe-$ {\rm{{Xe}}}^+ $ 电荷交换截面: $ A = 9.716, \;B = 0.4204 $ [48]
    e-$ {\rm{{Xe}}}^{Z_{i}+} $, $ {\rm{{Xe}}}^{Z_{i}+} $-$ {\rm{{Xe}}}^{Z_{j}+} $ 屏蔽库仑势 [49]
    下载: 导出CSV

    表 3  模型控制方程及对应边界条件

    Table 3.  Control equations and boundary conditions of the model.

    控制方程 左边界(入口) 右边界(出口) 上边界
    质量守恒方程: (1)式 $ u_z=u_\text{in}, u_r = 0 $ $ {\boldsymbol{{u}}} = 0 $
    动量守恒方程: (2)式 $ u_z=u_\text{in}, u_r = 0 $ $ p=p_0 $ $ {\boldsymbol{{u}}} = 0 $
    能量守恒方程: (3)式 $ T = 500{\rm{\; {K}}} $ $ T = 500{\rm{\; {K}}} $ $ T = 500{\rm{\; {K}}} $
    激光输运方程: (9)式 由激光模式确定
    下载: 导出CSV
  • [1]

    Raizer Y P 1970 J. Exp. Theor. Phys. 31 1148

    [2]

    Raizer Y P 1991 Gas Discharge Physics (Heidelberg: Springer) p415

    [3]

    Raizer Y P 1980 Sov. Phys. Usp. 23 789Google Scholar

    [4]

    Kantrowitz A 1972 Astronaut. Aeronaut. 10 74

    [5]

    Cremers D A, Archuleta F L, Martinez R J 1985 Spectrochim. Acta, Part B 40 665Google Scholar

    [6]

    Chen X, Mazumder J 1989 J. Appl. Phys. 66 5756Google Scholar

    [7]

    Bezel I, Delgado G, Derstine M, Gross K, Solarz R, Shchemelinin A, Shortt D 2015 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, May 10–15, 2015 pp1–2

    [8]

    Islam M, Ciaffoni L, Hancock G, Ritchie G A 2013 Analyst 138 4741Google Scholar

    [9]

    Horne S, Smith D, Besen M, Partlow M, Stolyarov D, Zhu H, Holber W 2010 Next-Generation Spectroscopic Technologies III (SPIE) Orlando, USA, April 5–6, 2010 pp105–111

    [10]

    Bezel I, Zvedenuk L B, Stepanov A E, KRerikh V, Potapkin B V US Patent US11776804 B2[2023-10-03

    [11]

    Bezel I, Zvedenuk L B, Stepanov A E, Torkaman A 2023 US Patent 2023/0053035 A1 [2023-02-16

    [12]

    Generalov N A, Zimakov V P, Kozlov G I, Masyukov V A, Raizer Y P 1970 Sov. J. Exp. Theor. Phys. 11 302

    [13]

    王海兴, 陈熙 2004 工程热物理学报 25 S1

    Wang H X, Chen X 2004 J. Eng. Thermophys. 25 S1

    [14]

    郑志远, 鲁欣, 张杰, 郝作强, 远晓辉, 王兆华 2005 物理学报 54 192Google Scholar

    Zheng Z Y, Lu X, Zhang J, Hao Z Q, Yuan X H, Wang Z H 2005 Acta. Phys. Sin. 54 192Google Scholar

    [15]

    Krier H, Mazumder J, Rockstroh T, Bender T, Glumb R 1986 AIAA J. 24 1656Google Scholar

    [16]

    Shi Z, Yang S, Yu F, Yu X 2023 Opt. Express 31 6132Google Scholar

    [17]

    Akarapu R, Nassar A R, Copley S M, Todd J A 2009 J. Laser Appl. 21 169Google Scholar

    [18]

    Fowler M C, Smith D C 1975 J. Appl. Phys. 46 138Google Scholar

    [19]

    Zimakov V P, Kuznetsov V A, Solovyov N G, Shemyakin A N, Shilov A O, Yakimov M Y 2016 Plasma Phys. Rep. 42 68Google Scholar

    [20]

    Hu Y, Wang X, Zuo D 2022 Vacuum 203 111229Google Scholar

    [21]

    Gerasimenko M V, Kozlov G I, Kuznetsov V A 1983 Sov. J. Quantum Electron. 13 438Google Scholar

    [22]

    Welle R, Keefer D, Peters C 1987 AIAA J. 25 1093Google Scholar

    [23]

    Jeng S M, Keefer D 1989 J. Propul. Power 5 577Google Scholar

    [24]

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001Google Scholar

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001Google Scholar

    [25]

    Jeng S M, Keefer D R 1987 J. Propul. Power 3 255Google Scholar

    [26]

    Batteh J H, Keefer D R 1974 IEEE Trans. Plasma Sci. 2 122Google Scholar

    [27]

    Glumb R J, Krier H 1984 J. Spacecr. Rockets 21 70Google Scholar

    [28]

    Molvik G A, Choi D, Merkle C L 1985 AIAA J. 23 1053Google Scholar

    [29]

    Merkle C L, Molvik G A, Shaw E J H 1986 J. Propul. Power 2 465Google Scholar

    [30]

    Jeng S M, Keefer D R, Welle R, Peters C E 1987 AIAA J. 25 1224Google Scholar

    [31]

    Conrad R, Raizer Y P, Sarzhikov S T 1996 AIAA J. 34 1584Google Scholar

    [32]

    Rafatov I R, Yedierler B, Kulumbaev E B 2009 J. Phys. D: Appl. Phys. 42 055212Google Scholar

    [33]

    Keefer D R, Henriksen B B, Braerman W F 1975 J. Appl. Phys. 46 1080Google Scholar

    [34]

    Generalov N A, Zakharov A M, Kosynkin V D, Yakimov M Y 1986 Combust., Explos. Shock Waves 22 214Google Scholar

    [35]

    Rafatov I 2009 Phys. Lett. A 373 3336Google Scholar

    [36]

    Zimakov V P, Kuznetsov V A, Solovyov N G, Shemyakin A N, Shilov A O, Yakimov M Y 2017 J. Phys. Conf. Ser. 815 012003Google Scholar

    [37]

    Zimakov V P, Lavrentyev S, Solovyov N, Shemyakin A, Yakimov M A 2019 Physical-Chemical Kinetics in Gas Dynamics 19 1

    [38]

    Lavrentyev S Y, Solovyov N G, Shemyakin A N, Yu Yakimov M 2019 J. Phys. Conf. Ser. 1394 012012Google Scholar

    [39]

    Kotov M A, Lavrentyev S Y, Shemyakin A N, Solovyov N G, Yakimov M Y 2022 Plasma Sources Sci. Technol. 31 124002Google Scholar

    [40]

    王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203Google Scholar

    Wang H X, Sun S R, Chen S Q 2012 Acta. Phys. Sin. 61 195203Google Scholar

    [41]

    陈艳秋 2014 物理学报 63 205201Google Scholar

    Chen Y Q 2014 Acta. Phys. Sin. 63 205201Google Scholar

    [42]

    Gordon S, McBride B J 1994 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. part 1: Analysis. Tech. Rep. 95 N20180, NASA

    [43]

    Johnston T W, Dawson J M 1973 Phys. Fluids 16 722Google Scholar

    [44]

    Gilleron F, Piron R 2015 High Energy Density Phys. 17 219Google Scholar

    [45]

    Chapman S, Cowling T G 1995 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases (3rd Ed.) (Cambridge: Cambridge University Press) p167

    [46]

    Adibzadeh M, Theodosiou C E 2005 At. Data Nucl. Data Tables 91 8Google Scholar

    [47]

    Amdur I, Mason E 1958 Phys. Fluids 1 370Google Scholar

    [48]

    Miller J S, Pullins S H, Levandier D J, Chiu Y h, Dressler R A 2002 J. Appl. Phys. 91 984Google Scholar

    [49]

    Mason E, Munn R, Smith F J 1967 Phys. Fluids 10 1827Google Scholar

    [50]

    Tang K, Toennies J P 1984 J. Chem. Phys. 80 3726Google Scholar

    [51]

    Tang K, Toennies J P 1986 Z. Phys. D: At. Mol. Clusters 1 91Google Scholar

    [52]

    Monchick L 1959 Phys. Fluids 2 695Google Scholar

    [53]

    Hirschfelder J, Curtiss C, Bird R, Mayer M 1954 Molecular Theory of Gases and Liquids (New York: Wiley) pp1126–1127

    [54]

    Devoto R S 1967 Phys. Fluids 10 354Google Scholar

    [55]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [56]

    Horn K P 1966 Radiative Behavior of Shock Heated Argon Plasma Flows (Stanford: Stanford University) p35

    [57]

    杜世刚 1998 等离子体物理 (北京: 原子能出版社) 第162页

    Du S G 1998 Plasma Physics (Beijing: Atomic Press) p162

    [58]

    COMSOL Multiphysics® v. 6.0. cn.comsol.com. COMSOL AB, Stockholm, Sweden.

    [59]

    过增元, 赵文华 1986 电弧和热等离子体(北京: 科学出版社) 第141—157页

    Guo Z Y, Zhao W H 1986 Arc and Thermal Plasma (Beijing: Science Press) pp141–157

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [3] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析. 物理学报, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [4] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [7] 张柱, 吴智政, 江新祥, 王园园, 朱进利, 李峰. 磁液变形镜的镜面动力学建模和实验验证. 物理学报, 2018, 67(3): 034702. doi: 10.7498/aps.67.20171281
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [10] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [12] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [13] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [14] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [16] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [17] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [18] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [20] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
计量
  • 文章访问数:  3696
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-11-07
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-01-20

/

返回文章
返回