搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场辅助激光生长类金刚石膜的微结构及光学性能

陆益敏 汪雨洁 徐曼曼 王海 奚琳

引用本文:
Citation:

磁场辅助激光生长类金刚石膜的微结构及光学性能

陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳

Micro-structural and optical properties of diamond-like carbon films grown by magnetic field-assisted laser deposition

Lu Yi-Min, Wang Yu-Jie, Xu Man-Man, Wang Hai, Xi Lin
PDF
HTML
导出引用
  • 在脉冲激光沉积技术中引入非均匀磁场, 探索磁场约束激光等离子体条件下生长类金刚石膜的特性, 为进一步提高类金刚石膜中sp3键含量、增强微结构调控提供理论和实验基础. 计算了磁场的磁感应强度及其磁力线分布, 仿真了碳离子在磁场约束下的飞行轨迹, 显示出磁场限制了碳离子的自由膨胀, 使其螺旋前进并向永磁体中心区域聚集. 膜层表面干涉和椭偏测量的拟合参数显示, 磁场的磁感应强度越高, 激光生长类金刚石膜的厚度及光学性能越不均匀. 拉曼光谱及其拟合结果显示, 磁场有利于提高碳网络结构的局部压力、提高膜层中的sp3键含量.
    Inhomogeneous magnetic field is introduced into pulsed laser deposition process, in order to find new properties of diamond-like carbon film grown under magnetic field, thereby offering the theoretical and experimental basis for further enhancing sp3-bond content in this film. Distribution of the magnetic strength and flux lines induced by a rectangular permanent magnet is calculated. And then, flying trace of the carbon ions in the magnetic field is also simulated by the iterative method, which indicates that the carbon ions cannot expand freely and they are confined and accumulate around the center region of the magnet source. Beside the surface interference, the measurement and the fitted results of ellipsometry parameters show that magnetic field exerts an important influence on layer-thickness distribution and optical constant of the pulsed laser deposition-grown diamond-like carbon film. Meanwhile, it is indicated that the inhomogeneity of the layer-thickness distribution and optical constant increase when the magnetic strength is higher. Micro-structure of diamond-like carbon film is affected seriously by magnetic field, which is indicated by Raman spectra. Magnetic field can enhance the local stress in the carbon matrix net, increasing the sp3-bond content. Theoretical research and experimental research both show that a suitable magnetic strength can excite micro-structure of diamond-like carbon film significantly, and the high-quality diamond-like carbon coating with practical application value will be obtained by technological adjustment.
      通信作者: 徐曼曼, manmxu@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 12205004)、安徽省高等学校科学研究重点项目(批准号: 2022AH050982)和安徽工程大学引进人才科研启动基金(批准号: 2022YQQ001)资助的课题.
      Corresponding author: Xu Man-Man, manmxu@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205004), the Scientific Research Project of Universities of Anhui Province, China (Grant No. 2022AH050982), and the Start-up Fund for Introductions of Anhui Polytechnic University, China (Grant No. 2022YQQ001).
    [1]

    邓钟炀, 贾强, 冯斌, 刘磊 2021 中国激光 48 0802010Google Scholar

    Deng Z Y, Jia Q, Feng B, Liu L 2021 Chin. J. Lasers 48 0802010Google Scholar

    [2]

    Lu Y M, Yang C L, Wang H, Ma L F, Xu M M, Xi L 2023 Vacuum 211 111912Google Scholar

    [3]

    Hiroharu K, Kazuya D, Satoshi H, Yoshiaki S 2000 Thin Solid Films 374 278Google Scholar

    [4]

    Fernandez C J, Vassent J L, Givord D 1999 Appl. Surf. Sci. 138–139 150Google Scholar

    [5]

    Zhang K J, Dai J M, Zhu X B, Zhu S J, Yin L H, Tang X W, Sun Y P 2020 Appl. Phys. Lett. 116 053103Google Scholar

    [6]

    戴建明, 张科军, 邹建, 刘亲壮, 盛志高, 朱雪斌, 吴文彬, 孙玉平 2014 中国专利 201410033519. X

    Dai J M, Zhang K J, Zou J, Liu Q Z, Sheng Z G, Zhu X B, Wu W B, Sun Y P 2014 China Patent 201410033519. X

    [7]

    Wakiya N, Kawaguchi T, Sakamoto N, Das H, Shinozaki K, Suzuki H 2017 J. Ceram. Soc. Jpn. 125 856Google Scholar

    [8]

    Ayano I, Takahiko K, Naonori S, Hisao S, Naoki W 2023 J. Ceram. Soc. Jpn. 131 275Google Scholar

    [9]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 物理学报 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [10]

    Sukhmander S, Hitendra K M 2023 J. Astrophys. Astr. 44 3Google Scholar

    [11]

    Zhang Y W, Zhao H L 2023 Adv. Space Res. 71 3281Google Scholar

    [12]

    Ali M, Parviz K, Mehdi R, Hadi S, Rouholah A 2015 Carbon 94 485Google Scholar

    [13]

    Modabberasl A, Sharifi M, Shahbazi F, Kameli P, Ranjbar M 2022 Diam. Relat. Mater. 128 109261Google Scholar

    [14]

    程勇, 陆益敏, 黄国俊, 米朝伟, 黎伟, 田方涛, 王赛 2019 红外与激光工程 48 1117002Google Scholar

    Cheng Y, Lu Y M, Huang G J, Mi C W, Li W, Tian F T, Wang S 2019 Infrared Laser Eng. 48 1117002Google Scholar

    [15]

    Ismail R A, Suaad S S, Ali M M 2021 Opt. Laser Technol. 140 107042Google Scholar

    [16]

    Nikov R G, Dikovska A O, Avdeev G V, Amoruso S, Ausanio G, Nedyalkov N N 2019 Appl. Surf. Sci. 471 368Google Scholar

    [17]

    Gao D W, Wang L, Su X Q, Jin Wang, Chen R X 2021 Opt. Mat. 114 110877Google Scholar

    [18]

    Debnath N, Kawaguchi T, Das H, Suzuki S, Kumasaka W, Sakamoto N, Shinozaki K 2018 Sci. Technol. Adv. Mat. 19 507Google Scholar

    [19]

    Zhang K J, Dai J M, Wu X B, Zhu X G, Zuo X Z, Zhang P, Hu L, Lu W J, Song W H 2016 Sci. Rep. 6 1Google Scholar

    [20]

    Behera N, Kumar A, Singh R K 2021 Plas. Res. Exp. 3 025011Google Scholar

    [21]

    王桂才 2021 博士学位论文(兰州: 中国科学院大学)

    Wang G C 2021 Ph. D. Dissertation (Lanzhou: University of Chinese Academy of Sciences

    [22]

    李慧敏, 龚瑞昆, 周国庆 2021 现代电子技术 44 150Google Scholar

    Li H M, Gong R K, Zhou G Q 2021 Modern Electron. Techn. 44 150Google Scholar

    [23]

    孟燕 2020 硕士学位论文(包头: 包头师范学院)

    Meng Y 2020 M. S. Thesis (Baotou: Baotou Teachers’ College

    [24]

    Lu Y M, Wang H, Mi C W, Yang C L, Huang G J, Xu M M 2023 Infrared Phys. Techn. 131 104708Google Scholar

    [25]

    唐雨, 束永平, 郭振杭 2022 东华大学学报(自然科学版) 48 126Google Scholar

    Tang Y, Shu Y P, Guo Z H 2022 J. Donghua Univ. (Natural Science) 48 126Google Scholar

    [26]

    崔长彩, 李慧慧, 陈希, 周志豪, 胡中伟 2023 仪器仪表学报 44 37Google Scholar

    Cui C C, Li H H, Chen X, Zhou Z H, Hu Z W 2023 Chin. J. Sci. Instrum. 44 37Google Scholar

    [27]

    Bobzin K, Kalscheuer C, Thiex M, Sperka P, Hartl M, Reitschuster S, Maier E, Lohner T, Stahl K 2023 Tribol. Lett. 71 2Google Scholar

    [28]

    薛群基, 王立军 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第6页

    Xue Q J, Wang L J 2012 Carbon-based Diamond-like Thin Film Materials (Beijing: Science Press) p6

    [29]

    Seong S Y, Chen H N, Seong L Y, Teck Y T 2015 J. Nanomater. 2015 731306Google Scholar

    [30]

    Jang S, Kim S H 2023 Carbon 202 61Google Scholar

  • 图 1  实验设置 (a) yoz平面; (b) xoz平面

    Fig. 1.  Experimental setup: (a) View of plane yoz; (a) view of plane xoz.

    图 2  磁场B1仿真 (a) y = 0平面上的磁感应强度及磁力线分布; (b) y = 0平面上的磁感应强度1D分布; (c) 不同z距离上的磁感应强度2D分布

    Fig. 2.  Simulation of the magnetic field B1: (a) Distribution of magnetic strength and flux lines in plane xoz; (b) 1D-distribution of magnetic strength in the plane y = 0; (c) 2D-distribution of magnetic strength at different distance in z axis.

    图 3  碳离子C2+飞行轨迹仿真 (a) B1; (b) B2; (c) B3

    Fig. 3.  Simulation of the C2+ flying path: (a) B1; (b) B2; (c) B3.

    图 4  不同磁场强度下生长DLC膜的光学图像(a)及其表面干涉(b)

    Fig. 4.  Images (a) and surficial interference (b) of DLC layers grown in magnetic field.

    图 5  PLD生长DLC膜的椭偏特性曲线 (a) B1-0 mm; (b) B1-18 mm; (c) B2-0 mm; (d) B2-18 mm

    Fig. 5.  Ellipsometry properties of of PLD grown DLC layers: (a) B1-0 mm; (b) B1-18 mm; (c) B2-0 mm; (d) B2-18 mm.

    图 6  磁场条件下生长DLC膜的厚度及光学常数变化趋势 (a) 厚度分布; (b) 折射率与消光系数

    Fig. 6.  Thickness and optical constant of DLC layers grown in magnetic field: (a) Thickness distribution; (b) refractive index and extinction coefficient.

    图 7  DLC膜的拉曼光谱 (a) 磁场B1生长条件; (b) 磁场B2生长条件

    Fig. 7.  Raman spectroscopies of DLC layers: (a) Growth condition of magnetic field B1; (b) growth condition of magnetic field B2.

    图 8  磁场B1生长条件下的DLC膜拉曼光谱拟合

    Fig. 8.  Deconvolued Raman spectroscopies of DLC layers in magnetic field B1.

    表 1  DLC膜拉曼光谱特性的拟合参数

    Table 1.  Fitted Raman parameters of DLC layers.

    样品 位置 /mm D峰位置 /cm–1 D峰半高宽度/cm–1 G峰位置/cm–1 G峰半高宽度/cm–1 ID/IG 比值
    S1 0 1385.4 219.4 1570.8 138.6 0.366
    6 1388.1 228.9 1570.3 133.1 0.381
    12 1387.0 251.3 1580.3 127.2 0.459
    18 1381.2 266.0 1588.0 123.5 0.868
    S2 0 1391.7 201.3 1563.7 146.1 0.331
    6 1386.1 253.1 1576.7 130.3 0.495
    12 1382.6 287.4 1588.2 122.5 0.838
    18 1387.8 308.0 1592.8 114.3 1.020
    下载: 导出CSV
  • [1]

    邓钟炀, 贾强, 冯斌, 刘磊 2021 中国激光 48 0802010Google Scholar

    Deng Z Y, Jia Q, Feng B, Liu L 2021 Chin. J. Lasers 48 0802010Google Scholar

    [2]

    Lu Y M, Yang C L, Wang H, Ma L F, Xu M M, Xi L 2023 Vacuum 211 111912Google Scholar

    [3]

    Hiroharu K, Kazuya D, Satoshi H, Yoshiaki S 2000 Thin Solid Films 374 278Google Scholar

    [4]

    Fernandez C J, Vassent J L, Givord D 1999 Appl. Surf. Sci. 138–139 150Google Scholar

    [5]

    Zhang K J, Dai J M, Zhu X B, Zhu S J, Yin L H, Tang X W, Sun Y P 2020 Appl. Phys. Lett. 116 053103Google Scholar

    [6]

    戴建明, 张科军, 邹建, 刘亲壮, 盛志高, 朱雪斌, 吴文彬, 孙玉平 2014 中国专利 201410033519. X

    Dai J M, Zhang K J, Zou J, Liu Q Z, Sheng Z G, Zhu X B, Wu W B, Sun Y P 2014 China Patent 201410033519. X

    [7]

    Wakiya N, Kawaguchi T, Sakamoto N, Das H, Shinozaki K, Suzuki H 2017 J. Ceram. Soc. Jpn. 125 856Google Scholar

    [8]

    Ayano I, Takahiko K, Naonori S, Hisao S, Naoki W 2023 J. Ceram. Soc. Jpn. 131 275Google Scholar

    [9]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 物理学报 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [10]

    Sukhmander S, Hitendra K M 2023 J. Astrophys. Astr. 44 3Google Scholar

    [11]

    Zhang Y W, Zhao H L 2023 Adv. Space Res. 71 3281Google Scholar

    [12]

    Ali M, Parviz K, Mehdi R, Hadi S, Rouholah A 2015 Carbon 94 485Google Scholar

    [13]

    Modabberasl A, Sharifi M, Shahbazi F, Kameli P, Ranjbar M 2022 Diam. Relat. Mater. 128 109261Google Scholar

    [14]

    程勇, 陆益敏, 黄国俊, 米朝伟, 黎伟, 田方涛, 王赛 2019 红外与激光工程 48 1117002Google Scholar

    Cheng Y, Lu Y M, Huang G J, Mi C W, Li W, Tian F T, Wang S 2019 Infrared Laser Eng. 48 1117002Google Scholar

    [15]

    Ismail R A, Suaad S S, Ali M M 2021 Opt. Laser Technol. 140 107042Google Scholar

    [16]

    Nikov R G, Dikovska A O, Avdeev G V, Amoruso S, Ausanio G, Nedyalkov N N 2019 Appl. Surf. Sci. 471 368Google Scholar

    [17]

    Gao D W, Wang L, Su X Q, Jin Wang, Chen R X 2021 Opt. Mat. 114 110877Google Scholar

    [18]

    Debnath N, Kawaguchi T, Das H, Suzuki S, Kumasaka W, Sakamoto N, Shinozaki K 2018 Sci. Technol. Adv. Mat. 19 507Google Scholar

    [19]

    Zhang K J, Dai J M, Wu X B, Zhu X G, Zuo X Z, Zhang P, Hu L, Lu W J, Song W H 2016 Sci. Rep. 6 1Google Scholar

    [20]

    Behera N, Kumar A, Singh R K 2021 Plas. Res. Exp. 3 025011Google Scholar

    [21]

    王桂才 2021 博士学位论文(兰州: 中国科学院大学)

    Wang G C 2021 Ph. D. Dissertation (Lanzhou: University of Chinese Academy of Sciences

    [22]

    李慧敏, 龚瑞昆, 周国庆 2021 现代电子技术 44 150Google Scholar

    Li H M, Gong R K, Zhou G Q 2021 Modern Electron. Techn. 44 150Google Scholar

    [23]

    孟燕 2020 硕士学位论文(包头: 包头师范学院)

    Meng Y 2020 M. S. Thesis (Baotou: Baotou Teachers’ College

    [24]

    Lu Y M, Wang H, Mi C W, Yang C L, Huang G J, Xu M M 2023 Infrared Phys. Techn. 131 104708Google Scholar

    [25]

    唐雨, 束永平, 郭振杭 2022 东华大学学报(自然科学版) 48 126Google Scholar

    Tang Y, Shu Y P, Guo Z H 2022 J. Donghua Univ. (Natural Science) 48 126Google Scholar

    [26]

    崔长彩, 李慧慧, 陈希, 周志豪, 胡中伟 2023 仪器仪表学报 44 37Google Scholar

    Cui C C, Li H H, Chen X, Zhou Z H, Hu Z W 2023 Chin. J. Sci. Instrum. 44 37Google Scholar

    [27]

    Bobzin K, Kalscheuer C, Thiex M, Sperka P, Hartl M, Reitschuster S, Maier E, Lohner T, Stahl K 2023 Tribol. Lett. 71 2Google Scholar

    [28]

    薛群基, 王立军 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第6页

    Xue Q J, Wang L J 2012 Carbon-based Diamond-like Thin Film Materials (Beijing: Science Press) p6

    [29]

    Seong S Y, Chen H N, Seong L Y, Teck Y T 2015 J. Nanomater. 2015 731306Google Scholar

    [30]

    Jang S, Kim S H 2023 Carbon 202 61Google Scholar

  • [1] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能. 物理学报, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [2] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [3] 李刘合, 刘红涛, 罗辑, 许亿. 带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究. 物理学报, 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [4] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [5] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [6] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [7] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [8] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [9] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [10] 甄聪棉, 马 丽, 张金娟, 刘 英, 聂向富. Ti(Cr)缓冲层对用于垂直磁记录材料CoCrTa介质磁特性和微结构的影响. 物理学报, 2007, 56(3): 1730-1734. doi: 10.7498/aps.56.1730
    [11] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [12] 刘艳红, 张家良, 王卫国, 李 建, 刘东平, 马腾才. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备. 物理学报, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [13] 王 静, 刘贵昌, 汲大鹏, 徐 军, 邓新禄. 铜上采用过渡层沉积类金刚石薄膜的研究. 物理学报, 2006, 55(7): 3748-3755. doi: 10.7498/aps.55.3748
    [14] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [15] 李之杰, 潘正瑛, 朱 靖, 魏 启, 王月霞, 臧亮坤, 周 亮, 刘提将. 离子束辅助沉积对类金刚石膜结构影响的计算机模拟. 物理学报, 2005, 54(5): 2233-2238. doi: 10.7498/aps.54.2233
    [16] 朱丹丹, 章晓中, 薛庆忠. 用脉冲激光方法在Si(100)上沉积的Cox-C1-x颗粒膜及其磁电阻效 应. 物理学报, 2003, 52(12): 3181-3185. doi: 10.7498/aps.52.3181
    [17] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [18] 杨武保, 范松华, 刘赤子, 张谷令, 王久丽, 杨思泽. 脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
    [19] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [20] 林秀华, 刘 新. 多弧离子镀工艺对TiN/Ti与Cr/Cu界面及微结构的影响. 物理学报, 2000, 49(11): 2220-2224. doi: 10.7498/aps.49.2220
计量
  • 文章访问数:  2202
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-03-07
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回