-
β-Ga2O3具有超宽带隙(约4.9 eV)、高的击穿电场(约8 MV/cm)、良好的化学稳定性和热稳定性等优点, 是一种很有前途的制备紫外光电探测器的候选材料. 由于未掺杂的β-Ga2O3为n型导电, 所以制备p型β-Ga2O3面临很多困难, 从而制约了同质PN结的开发与应用. 聚(3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)是一种p型导电聚合物, 在250—700 nm有着较高的透明度, 采用p型有机材料PEDOT:PSS和n型β-Ga2O3构成的异质结可能为PN结型光电器件的研制提供一种途径. 本文利用机械剥离法从β-Ga2O3单晶衬底上剥离出单根β-Ga2O3微米片, 微米片的长度为4 mm, 宽度为500 μm, 厚度为57 μm. 将有机材料PEDOT:PSS涂覆在剥离出来的微米片的一侧制备出PEDOT:PSS/β-Ga2O3无机-有机异质结的紫外光电探测器, 器件表现出典型的整流特性, 而且发现器件对254 nm紫外光敏感, 具有良好的自供电性能. 该异质结紫外探测器的响应度和外量子效率分别为7.13 A/W和3484%, 上升时间和下降时间分别为0.25 s和0.20 s. 此外, 3个月后器件对254 nm紫外光的探测性能并未发现明显的衰减现象. 本文的相关研究工作将对研发新型紫外探测器提供了新的思路和理论基础.
Ultrawide-bandgap (4.9 eV) β-Ga2O3 material possesses exceptional properties such as a high critical-breakdown field (~8 MV/cm) and robust chemical and thermal stability. However, due to the challenges in the growth of p-type β-Ga2O3, the preparation of homojunction devices is difficult. Therefore, the utilization of heterojunctions based on β-Ga2O3 provides a viable approach for fabricating ultraviolet photodetectors. Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS), a p-type organic polymer material, exhibits high transparency in a 250–700 nm wavelength range. Additionally, its remarkable conductivity (>1000 S/cm), high hole mobility (1.7 cm2·V–1·s–1), and excellent chemical stability make it an outstanding candidate for serving as a hole transport layer. Consequently, the combination of p-type PEDOT:PSS with n-type β-Ga2O3 in a heterojunction configuration provides a promising way for developing PN junction optoelectronic devices. In this study, a β-Ga2O3 microsheet with dimensions: 4 mm in length, 500 μm in width, and 57 μm in thickness, is successfully exfoliated from a β-Ga2O3 single crystal substrate by using a mechanical exfoliation technique. Subsequently, a PEDOT:PSS/β-Ga2O3 organic/inorganic p-n heterojunction UV photodetector is fabricated by depositing the PEDOT:PSS organic material onto a side of the β-Ga2O3 microsheet. The obtained device exhibits typical rectification characteristics, sensitivity to 254 nm ultraviolet light, and impressive self-powering performance. Furthermore, the heterojunction photodetector demonstrates exceptional photosensitive properties, achieving a responsivity of 7.13 A/W and an external quantum efficiency of 3484% under 254 nm UV light illumination (16 μW/cm2) at 0 V. Additionally, the device exhibits a rapid photoresponse time of 0.25 s/0.20 s and maintains good stability and repeatability over time. Notably, after a three-month duration, the photodetection performance for 254 nm UV light detection remained unchanged, without any significant degradation. This in-depth research provides a novel perspective and theoretical foundation for developing innovative UV detectors and paving the way for future advancements in the field of optoelectronics. -
Keywords:
- β-Ga2O3 /
- PEDOT:PSS /
- heterojunction /
- UV photodetector
[1] Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar
[2] Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar
[3] Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar
[4] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[5] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar
[6] Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar
[7] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[8] Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar
[9] Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[10] Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar
[11] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 物理学报 72 198503Google Scholar
Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar
[12] Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar
[13] Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar
[14] Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar
[15] Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar
[16] Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar
[17] Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar
[18] Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar
[19] Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[20] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar
Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar
[21] Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar
[22] Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar
[23] Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar
[24] Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar
[27] Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar
[28] Ouyang J Y 2013 Displays 34 423Google Scholar
[29] Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar
-
表 1 自供电型无机/有机日盲紫外探测器的性能参数比较
Table 1. Performance comparison of inorganic/organic self-powered solar blind UV detectors.
Structure R/(mA·W–1) Light intensity/(μW·cm–2) Rise/decay time EQE/% Ref. PEDOT:PSS/Ga2O3 microwire 3.25×103 16 0.25 s/0.20 s 1591 This work Ppy-PEDOT:PSS/GaN 1.1×103 6.56×103 0.25 s/0.28 s 4.0×105 [23] Ga2O3/spiro-OMeTAD 65 1 2.98 μs/28.49 μs 32 [24] PEDOT:PSS/Ga2O3 (Bulk) 37 1.5×10–3 9 ms/9 ms 18 [25] PEDOT:PSS/Ga2O3/Si 29 12 60 ms/88 ms 15 [26] ZnO/PVK/PEDOT/CNT 9.96 210 1.5 s/6 s ~0.6 [27] -
[1] Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar
[2] Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar
[3] Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar
[4] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[5] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar
[6] Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar
[7] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[8] Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar
[9] Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[10] Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar
[11] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 物理学报 72 198503Google Scholar
Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar
[12] Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar
[13] Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar
[14] Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar
[15] Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar
[16] Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar
[17] Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar
[18] Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar
[19] Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[20] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar
Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar
[21] Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar
[22] Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar
[23] Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar
[24] Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar
[27] Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar
[28] Ouyang J Y 2013 Displays 34 423Google Scholar
[29] Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar
计量
- 文章访问数: 1268
- PDF下载量: 30
- 被引次数: 0