搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干合成涡旋光束的离轴入射转速测量

海迪且木⋅阿布都吾甫尔 谭乐韬 于涛 谢文科 刘静 邵铮铮

引用本文:
Citation:

基于相干合成涡旋光束的离轴入射转速测量

海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮

Study of off-axis incident rotational speed measurement based on coherent synthetic vortex beams

Hadiqa⋅ Abdugopur, Tan Le-Tao, Yu Tao, Xie Wen-Ke, Liu Jing, Shao Zheng-Zheng
PDF
HTML
导出引用
  • 基于涡旋光束旋转多普勒效应的转速测量技术, 在实际应用中面临探测涡旋光功率低、难以严格沿转轴入射、轨道角动量谱扩散严重等问题, 直接影响转速测量的距离和精度. 阵列光束相干合成高质量、高功率的涡旋光束, 是提高回波信号强度最直接的技术方法. 本文在光纤激光阵列相干合成涡旋光束转速测量实验装置的基础上, 开展了离轴入射条件下的相干合成涡旋光束目标转速测量的理论建模和实验验证研究. 首先, 对离轴入射相干合成涡旋光的轨道角动量谱进行了理论研究, 建立了基于旋转多普勒效应的相干合成涡旋光束目标转速解调的一般模型. 其次, 进行了离轴入射情况下的目标转速测量实验, 实验结果验证了该转速解调普适模型的有效性. 该研究可为基于涡旋光束旋转多普勒效应的远程探测应用提供技术参考.
    Vortex beam (VB) is a structured light beam with a helical wavefront and carrying orbital angular momentum (OAM). Compared with Gaussian beam, the VB possesses the rotational Doppler effect (RDE), which is anticipated to compensate for the shortcoming of traditional detection methods in the spin motion of the target object. However, in practical applications, the rotational speed measurement technology based on the VB is facing some challenges, such as weak echo signal intensity due to low vortex beam light power and OAM spectrum expansion caused by off-axis incidence of the vortex beam. These above-mentioned problems directly limit the accuracy and application range of rotational speed measurement. To expand the application range of detection scheme based on the VB, we study the measurement scheme of the target rotational speed based on the combined vortex beam (CVB), which is on the basis of the experimental device for rotational speed measurement with CVB generated by fibre laser arrays. Firstly, the OAM spectra of the off-axis incidence situation are simulated. According to the simulation results, we derive a general model of the peak distribution of echo signals under the off-axis incidence, and propose a rotational speed measurement scheme based on the frequency interval between adjacent spectral peaks. Secondly, we carry out the target rotational speed measurement experiment in off-axis incidence case, and the difference in frequency between two adjacent spectral peaks is obtained from the spectrum map of the echo signal to measure the rotational speed of the target object. The results show that the target rotational speed can be accurately measured regardless of the lateral displacement and angular deflection in the case of off-axis incidence, which confirms the validity of the universal model for rotational speed measurement. The rotational speed measurement scheme proposed in this study takes into consideration the off-axis incidence prevalent in practical application, thereby improving the applicability in the target object rotational speed measurement, and providing technical reference for remote sensing detection application based on the VB.
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com ; Liu Jing, xdlj@xju.edu.cn ; Shao Zheng-Zheng, zzshao_nudt@163.com
    [1]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [2]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar

    [3]

    Lavery M P, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [4]

    Liu K, Cheng Y Q, Li X, Gao Y 2019 IEEE Veh. Technol. Mag. 14 112Google Scholar

    [5]

    Fang L, Padgett M J, Wang J 2017 Laser Photon. Rev. 11 1700183Google Scholar

    [6]

    Zhu X Y, Qiu S, Liu T, Ding Y, Tang R Y, Liu Z L, Chen X C, Ren Y 2023 Nanophotonics 12 2157Google Scholar

    [7]

    Tang R Y, Li X, Qiu S, Zhu X Y, Liu T, Liu Z L, Chen X C, Ren Y 2023 Opt. Express 31 39995Google Scholar

    [8]

    Zhai Y W, Fu S Y, Yin C, Zhou H, Gao C Q 2019 Opt. Express 27 15518Google Scholar

    [9]

    Zhai Y W, Fu S Y, Zhang J, Lü Y, Zhou H, Gao C Q 2020 Appl. Phys. Express 13 022012Google Scholar

    [10]

    Qiu S, Liu T, Li Z, Wang C, Ren Y, Shao Q L, Xing C Y 2019 Appl. Opt. 58 2650Google Scholar

    [11]

    Zhou H L, Fu D Z, Dong J J, Zhang P, Zhang X L 2016 Opt. Express 24 10050Google Scholar

    [12]

    Belmonte A, Torres J P 2011 Opt. Lett 36 4437Google Scholar

    [13]

    Li K F, Deng J H, Liu X, Li G 2018 Laser Photon. Rev. 12 1700204Google Scholar

    [14]

    Phillips D, Lee M, Speirits F, Barnett S M, Simpson S H, Lavery M P, Padgett M J, Gibson G M 2014 Phys. Rev. A 90 011801Google Scholar

    [15]

    Qiu S, Liu T, Ren Y, Li Z M, Wang C, Shao Q L 2019 Opt. Express 27 24781Google Scholar

    [16]

    Zhi D, Hou T, Ma P, Ma Y, Zhou P, Tao R, Wang X, Si L 2019 High Power Laser Sci. Eng. 7 e33Google Scholar

    [17]

    Long J, Chang H, Zhang Y, Hou T, Chang Q, Su R, Ma Y, Ma P, Zhou P 2022 Opt. Laser Technol 148 107775Google Scholar

    [18]

    Yu T, Xia H, Xie Q, Qin G W, Zhao Y F, Xie W K 2022 Opt. Express 30 39294Google Scholar

    [19]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊胜, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [20]

    Yu T, Xia H, Xie W K, Xiao G Z, Li H J 2020 Res. Phys. 16 102872Google Scholar

    [21]

    Ding Y, Ren Y, Liu T, Qiu S, Wang C, Li Z M, Liu Z L 2021 Opt. Express 29 15288Google Scholar

    [22]

    谢巧 2023 硕士学位论文 (长沙: 中南大学)

    Xie Q 2023 M. S. Thesis (Changsha: Central South University

  • 图 1  阵列光束的空间分布图[18]

    Fig. 1.  Spatial distribution of array beams[18].

    图 2  传输距离z = 1 km时的±6阶相干合成涡旋光束 (a)光场强度分布; (b) OAM谱分布

    Fig. 2.  Coherent synthesis of the ±6th order vortex beam at a transmission distance of z = 1 km: (a) Distribution of light field intensity; (b) distribution of OAM spectrum.

    图 3  涡旋光离轴入射示意图, 偏心距离为d, 倾斜角度为γ

    Fig. 3.  Schematic of off-axis incident vortex beams, and the lateral displacement is d, the angle of inclination is γ.

    图 4  离轴入射时的OAM谱分布 (a)—(f)倾斜角度$ \gamma =10°$不变时, 以偏心距离分别为d = 1.25, 1.75, 2.25, 2.75, 3.25, 3.75 cm入射

    Fig. 4.  Spectrum of OAM modes at off-axis incidence: (a)–(f) For different lateral displacements incident at constant inclination γ = 10°, transverse displacements were d = 1.25, 1.75, 2.25, 2.75, 3.25, 3.75 cm.

    图 5  (a)实验装置图; (b)相位控制后的±6阶涡旋光束

    Fig. 5.  (a) Experimental setup; (b) phase-controlled ±6th-order vortex beams.

    图 6  离轴入射时, 转速为Ω = 73.304 rad/s的目标散射场时域信号和旋转多普勒频率信号 (a), (b) γ = 10°, d = 1.25 cm; (c), (d) γ = 10°, d = 3.75 cm; (e), (f) γ = 15°, d = 1.25 cm

    Fig. 6.  At off-axis incidence, time domain signal and rotational Doppler frequency signal of the target scattered light field with a rotational speed of Ω = 73.304 rad/s: (a), (b) γ = 10°, d = 1.25 cm; (c), (d) γ = 10°, d = 3.75 cm; (e), (f) γ = 15°, d = 1.25 cm.

    图 7  探测光离轴入射时, 不同转速下的相对误差比较曲线 (a)倾斜角度γ = 10°不变, 偏心距离分别为d = 1.25, 1.75, 2.25, 2.75, 3.25, 3.75 cm; (b)偏心距离d = 1.25 cm不变, 倾斜角度分别为γ = 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°

    Fig. 7.  Detecting light at off-axis incidence, relative error comparison curves at different RPMs: (a) Angle of inclination γ = 10° is constant and the lateral displacements are d = 1.25, 1.75, 2.25, 2.75, 3.25, 3.75 cm; (b) the lateral displacement d = 1.25 cm is constant and the angles of inclination are γ = 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°

    表 1  在73.304 rad/s的转速下, 探测光以不同偏心距离入射的误差结果

    Table 1.  Error results for beams incident at different transverse displacements at a speed of 73.304 rad/s.

    d/cm $ {\varOmega }_{m} $
    /(rad·s–1)
    $ \Delta \varOmega ={\varOmega }_{m}-\varOmega $
    /(rad·s–1)
    $ \eta = \dfrac{|\Delta \varOmega |}{\varOmega} \times 100{\mathrm{{\text{%}}}} $
    1.25 73.633 0.329 0.4%
    1.75 73.370 0.066 0.09%
    2.25 73.679 0.375 0.5%
    2.75 73.588 0.284 0.4%
    3.25 73.631 0.327 0.4%
    3.75 74.901 1.597 2.2%
    下载: 导出CSV

    表 2  在73.304 rad/s的转速下, 以不同倾斜角度入射的误差结果

    Table 2.  Error results for beams incident at different inclination angles at a speed of 73.304 rad/s.

    γ/(°) $ {\varOmega }_{m} $
    /(rad·s–1)
    $ \Delta \varOmega ={\varOmega }_{m}-\varOmega $
    /(rad·s–1)
    $ \eta = \dfrac{|\Delta \varOmega |}{\varOmega} \times 100{\mathrm{{\text{%}}}} $
    10 73.633 0.329 0.4%
    15 73.545 0.241 0.3%
    20 73.594 0.291 0.4%
    25 73.504 0.201 0.3%
    30 73.714 0.410 0.6%
    35 73.597 0.293 0.4%
    40 73.589 0.285 0.4%
    45 73.528 0.224 0.3%
    下载: 导出CSV
  • [1]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [2]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar

    [3]

    Lavery M P, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [4]

    Liu K, Cheng Y Q, Li X, Gao Y 2019 IEEE Veh. Technol. Mag. 14 112Google Scholar

    [5]

    Fang L, Padgett M J, Wang J 2017 Laser Photon. Rev. 11 1700183Google Scholar

    [6]

    Zhu X Y, Qiu S, Liu T, Ding Y, Tang R Y, Liu Z L, Chen X C, Ren Y 2023 Nanophotonics 12 2157Google Scholar

    [7]

    Tang R Y, Li X, Qiu S, Zhu X Y, Liu T, Liu Z L, Chen X C, Ren Y 2023 Opt. Express 31 39995Google Scholar

    [8]

    Zhai Y W, Fu S Y, Yin C, Zhou H, Gao C Q 2019 Opt. Express 27 15518Google Scholar

    [9]

    Zhai Y W, Fu S Y, Zhang J, Lü Y, Zhou H, Gao C Q 2020 Appl. Phys. Express 13 022012Google Scholar

    [10]

    Qiu S, Liu T, Li Z, Wang C, Ren Y, Shao Q L, Xing C Y 2019 Appl. Opt. 58 2650Google Scholar

    [11]

    Zhou H L, Fu D Z, Dong J J, Zhang P, Zhang X L 2016 Opt. Express 24 10050Google Scholar

    [12]

    Belmonte A, Torres J P 2011 Opt. Lett 36 4437Google Scholar

    [13]

    Li K F, Deng J H, Liu X, Li G 2018 Laser Photon. Rev. 12 1700204Google Scholar

    [14]

    Phillips D, Lee M, Speirits F, Barnett S M, Simpson S H, Lavery M P, Padgett M J, Gibson G M 2014 Phys. Rev. A 90 011801Google Scholar

    [15]

    Qiu S, Liu T, Ren Y, Li Z M, Wang C, Shao Q L 2019 Opt. Express 27 24781Google Scholar

    [16]

    Zhi D, Hou T, Ma P, Ma Y, Zhou P, Tao R, Wang X, Si L 2019 High Power Laser Sci. Eng. 7 e33Google Scholar

    [17]

    Long J, Chang H, Zhang Y, Hou T, Chang Q, Su R, Ma Y, Ma P, Zhou P 2022 Opt. Laser Technol 148 107775Google Scholar

    [18]

    Yu T, Xia H, Xie Q, Qin G W, Zhao Y F, Xie W K 2022 Opt. Express 30 39294Google Scholar

    [19]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊胜, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [20]

    Yu T, Xia H, Xie W K, Xiao G Z, Li H J 2020 Res. Phys. 16 102872Google Scholar

    [21]

    Ding Y, Ren Y, Liu T, Qiu S, Wang C, Li Z M, Liu Z L 2021 Opt. Express 29 15288Google Scholar

    [22]

    谢巧 2023 硕士学位论文 (长沙: 中南大学)

    Xie Q 2023 M. S. Thesis (Changsha: Central South University

  • [1] 刘伟, 贾青, 郑坚. 弱相对论涡旋光在等离子体中传播的波前畸变及补偿. 物理学报, 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [5] 印必还, 何姿, 丁大志. 基于旋转多普勒效应的自旋目标转速估计方法. 物理学报, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [6] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [7] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [8] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [9] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [10] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [11] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [12] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [13] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [14] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [15] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [16] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [17] 张进, 周新星, 罗海陆, 文双春. 涡旋光束在反射中的正交偏振特性研究. 物理学报, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [18] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [19] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [20] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
计量
  • 文章访问数:  1142
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-06-28
  • 上网日期:  2024-07-13
  • 刊出日期:  2024-08-20

/

返回文章
返回