搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计

田杉杉 高倩 高泽冉 熊雨晨 丛日东 于威

引用本文:
Citation:

单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计

田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威

Design of back-contact interface of Cu(In,Ga)Se2 solar cells by single-target magnetron sputtering

Tian Shan-Shan, Gao Qian, Gao Ze-Ran, Xiong Yu-Chen, Cong Ri-Dong, Yu Wei
PDF
HTML
导出引用
  • 通过磁控溅射单一四元靶材磁控得到的黄铜矿Cu(In, Ga)Se2 (CIGS)太阳电池开发的主要瓶颈是严重的载流子复合, 其开路电压非常低. CIGS与钼(Mo)之间不良的缺陷环境是吸收体和界面复合严重的主要原因之一. 其中, 在背界面处引入的CuGaSe2 (CGS)低温缓冲层可以有效地抑制吸收体与背电极在高温磁控过程中的不利界面反应, 从而获得高质量的晶体. 通过这种背界面工程, 不仅可以很好地解决吸收体和界面质量不佳的问题, 而且有利于在吸收层中形成梯度带隙结构, 从而使深能级InGa缺陷转换为较低能级的VCu缺陷, 最终CIGS太阳电池的转换效率达到15.04%. 这项工作为直接溅射高效率CIGS太阳电池的产业化提供了一种新的方法.
    Thin-film solar cells provide an opportunity to reduce the cost of converting solar energy into electricity by replacing expensive and thick silicon wafers, which account for more than 50% of the total cost of photovoltaic (PV) modules. However, many thin-film solar cell materials result in low PV performance due to enhanced recombination through defect states. Cu(In,Ga)Se2 (CIGS) is a promising thin-film solar cell material due to its direct tunable bandgap, high absorption coefficient, low effective electron and hole mass, and abundant constituent elements. Among them, magnetron sputtering or selenization technology is widely used to catch up with the development of preparing large-area CIGS thin-film solar cells because of its uniform film composition and simple process. However, the use of toxic gases such as H2Se and H2S and the difficulty in forming gradient bandgaps limit their development. In this work, the “V” Ga gradient classification of the absorbing layer of CIGS solar cells is realized by sputtering CuGaSe2 (CGS) thin layers of different thickness values in the room temperature layer by sputtering and selenium-free methods of quaternary target sputtering. Firstly, the microstructure of the film is characterized by scanning electron microscope, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and when the CGS layer is located in the middle of the low-temperature layer, the grain size of the film is the largest, the crystallinity is the best, forming a “V-shaped” structure of CGI on the back of the absorbing layer. Subsequently, IV and external quantum efficiency (EQE) tests show that the optimized cell efficiency is as high as 15.04%, and the light response intensity is enhanced in the 300 -1200 nm band. Finally, the admittance spectrum(AS) test shows that the defect energy level of the solar cell changes from InGa defect to VCu defect of lower energy level, and the defect density decreases from 7.04×1015 cm–3 to 5.51×1015 cm–3. This is comparable to the recording efficiency of the current single-target magnetron sputtering CIGS solar cells, demonstrating good application prospects.
      通信作者: 丛日东, congrd@hbu.edu.cn ; 于威, yuwei@hbu.edu.cn
      Corresponding author: Cong Ri-Dong, congrd@hbu.edu.cn ; Yu Wei, yuwei@hbu.edu.cn
    [1]

    Cheng K, Shen X F, Liu J L, Liu X S, Du Z L 2021 Sol. Energy 217 70Google Scholar

    [2]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [3]

    Gao Q Q, Yuan S J, Zhou Z J, Kou D X, Zhou W H, Meng Y N, Qi Y F, Han L T, Wu S X 2022 Small 18 2203443Google Scholar

    [4]

    Wang Y H, Tu L H, Chang Y L , Lin S K, Lin T Y, Lai C H 2021 ACS Appl. Energy Mater. 4 11555Google Scholar

    [5]

    Hsu C H, Ho W H, Wei S Y, Lai C H 2017 Adv. Energy Mater. 7 1602571Google Scholar

    [6]

    Hsu C H, Su Y S, Wei S Y, Chen C H, Ho W H, Chang C, Wu Y H, Lin C J, Lai C H 2015 Prog. Photovolt. 23 1621Google Scholar

    [7]

    Dai W L, Gao Z R, Li J J, Qin S M, Wang R B, Xu H Y, Wang X Z, Gao C, Teng X Y, Zhang Y, Hao X J, Wang Y L, Yu W 2021 ACS Appl. Mater. Interfaces 13 49414Google Scholar

    [8]

    Wang Y H, Ho P H, Huang W C, Tu L H, Chang H F, Cai C H, Lai C H 2020 ACS Appl. Mater. Interfaces 12 28320Google Scholar

    [9]

    Kong Y F, Li J M, Ma Z Y, Chi Z, Xiao X D 2020 J. Mater. Chem. A. 8 9760Google Scholar

    [10]

    Hoang V Q, Jeon D H, Park H K, Kim S Y, Kim W H, Hwang D K, Lee J, Son D H, Yang K J, Kang J K, Jo W 2023 ACS Appl. Energy Mater. 6 12180Google Scholar

    [11]

    Giraldo S, Fonoll-Rubio R, Jehl Li-Kao Z, et al. 2020 Prog. Photovolt. 29 334Google Scholar

    [12]

    Wan X J, Yuan M Y, Zeng C H, Lin R X, Li D Y, Hong R J 2024 Sol. Energy 273 112510Google Scholar

    [13]

    Sun Y L, Qin S M, Ding D L, Gao H F, Zhou Q, Guo X Y, Gao C, Liu H X, Zhang Y, Yu W 2023 Chem. Eng. J. 455 140596Google Scholar

    [14]

    Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K 2021 Sol. Energy 227 13Google Scholar

    [15]

    Kim S T, Bhatt V, Kim Y C, Jeong H J, Yun J H, Jang J H 2022 J. Alloys Compd. 899 163301Google Scholar

    [16]

    Busacca A C, Rocca V, Curcio L, et al. 2014 International Conference on Renewable Energy Research and Application (ICRERA), IEEE Milwaukee, WI, USA, October 19–22, 2014 p964

    [17]

    Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S 2013 Appl. Phys. Lett. 103 143903Google Scholar

    [18]

    Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S C, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1900408Google Scholar

    [19]

    Zhao Y H, Yuan S J, Kou D X, Zhou Z J, Wang X S, Xiao H Q, Deng Y Q, Cui C C, Chang Q Q, Wu S X 2020 ACS Appl. Mater. 12 12717Google Scholar

    [20]

    Witte W, Abou-Ras D, Albe K, et al. 2015 Prog. Photovolt. 23 717Google Scholar

    [21]

    Venkatalaxmi A, Padmavathi B S, Amaranath T 2004 Fluid Dyn. Res. 35 229Google Scholar

    [22]

    Thompson C P, Chen L, Shafarman W N, Lee J, Fields S, Birkmire R W 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) Orleans, LA, USA, June 14–19, 2015 p1

    [23]

    Chantana J, Hironiwa D, Watanabe T, Teraji S, Kawamura K, Minemoto T 2015 Sol. Energy Mat. Sol. C. 133 223Google Scholar

    [24]

    Decock K, Khelifi S, Burgelman M 2011 Sol. Energy Mat. Sol. C. 95 1550Google Scholar

  • 图 1  CIGS太阳电池结构示意图及低温层结构示意图

    Fig. 1.  Schematic diagram of CIGS solar cell structure and low-temperature layer structure.

    图 2  (a) 不同结构低温层所制备的CIGS薄膜的截面SEM图; (b) CIGS-ref和CIGS-mid的EDS线扫描图绘制的Ga梯度带隙图

    Fig. 2.  (a) Cross-sectional SEM images of CIGS films prepared for low-temperature layers with different structures; (b) Ga gradient bandgap plot plotted by EDS line scan plots of CIGS-ref and CIGS-mid.

    图 3  CIGS-ref和CIGS-mid薄膜的AFM图

    Fig. 3.  AFM images of CIGS-ref and CIGS-mid films.

    图 4  (a) CIGS吸收层在不同结构低温层条件下的XRD谱图; (b) (112) 峰的半峰宽图; (c) CIGS吸收层在不同结构低温层条件下的Raman结果及其吸收层深度上的CIGS峰位置; (d) 通过XPS得到CIGS-ref和CIGS-mid的GGI数据图

    Fig. 4.  (a) XRD of CIGS absorber layer under different structures of low temperature layers; (b) half-peak width plot of peak (112); (c) Raman results of CIGS absorber layers under different structural low-temperature layer conditions and CIGS peak positions on the depth of the absorber layer; (d) GGI data plots of CIGS-ref and CIGS-mid obtained by XPS.

    图 5  基于不同Ga梯度结构条件下制备的CIGS太阳电池的性能参数箱线图 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Fig. 5.  Box plots of performance parameters of CIGS solar cells prepared under different Ga gradient structure conditions: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 6  基于不同Ga梯度结构条件下制备的CIGS太阳电池的 (a) J-V曲线, (b) EQE曲线, 以及 (c) 其带隙图

    Fig. 6.  (a) J-V curves and (b) EQE curves of CIGS solar cells prepared under different Ga gradient structure conditions and (c) its bandgap diagram.

    图 7  在80—300 K的温度范围内, (a) CIGS-ref和(b) CIGS-mid样品的电流密度-电压(J-V)特性; (c) 两个样品的VOCT的关系曲线; (d) 暗J-VRsT的关系曲线(插图为ln(RsT)与 1000/T 的关系曲线)

    Fig. 7.  (a), (b) Current density-voltage (J-V) characteristics of CIGS-ref and CIGS-mid samples over a temperature range of 80 to 300 K; (c) VOC/T curves of the two samples; (d) relationship between Rs and T under dark J-V (Insert is relationship curve between $ {\mathrm{l}}{\mathrm{n}}\;({R}_{{\mathrm{s}}}\cdot T) $ and 1000/T).

    图 8  样品 CIGS-ref, CIGS-top, CIGS-bot, CIGS-mid, CIGS-max (a)载流子浓度NCV与耗尽区宽度Wd的分布图及(b) 1/C2与外置偏压V的关系图

    Fig. 8.  , The distribution plots of (a) carrier concentration NCV and the depletion zone width Wd and (b) the relationship between 1/C2 and external bias V of the CIGS-ref, CIGS-top, CIGS-bot, CIGS-mid, CIGS-max, respectively.

    图 9  (a) 样品CIGS-ref导纳谱; (b) 样品CIGS-mid导纳谱; (c) 样品CIGS-ref和CIGS-mid为经计算提取的1000/T和$ {\mathrm{l}}{\mathrm{n}}({\omega }_{0}/{T}^{2}) $的关系图和相关缺陷激活能; (d) 样品CIGS-ref和薄膜CIGS-mid为所对应缺陷的态密度

    Fig. 9.  (a) CIGS-ref admittance spectrum of the sample; (b) CIGS-mid admittance spectra of the sample; (c) the CIGS-ref and CIGS-mid of the film are the calculated plots of 1000/T and $ {\mathrm{l}}{\mathrm{n}}({\omega }_{0}/{T}^{2}) $ and the associated defect activation energies; (d) the density of states of the defect corresponding to CIGS-ref and CIGS-mid.

    表 1  国内外主要CIGS研究机构的研究进展

    Table 1.  Research progress of major CIGS research institutions at home and abroad.

    衬底材料 效率/% 机构 方法
    钠钙玻璃 19.40 中国科学院 共蒸发
    钠钙玻璃 21.70 ZSW 共蒸发
    不锈钢 17.70 EMPA 共蒸发
    不锈钢 19.40 Miasolé 共溅射
    钠钙玻璃 15.80 河北大学 单靶溅射无硒化
    聚酰亚胺 20.80 EMPA 共蒸发
    钠钙玻璃 22.92 汉能 共蒸发
    钠钙玻璃 23.35 Solar Frontier 共蒸发
    注: ZSW: 德国巴登符腾堡太阳能与氢能源研究中心;
    EMPA: 瑞士联邦材料科学与技术实验室.
    下载: 导出CSV

    表 2  CIGS太阳电池详细结构表

    Table 2.  Detailed structure of CIGS solar cells.

    CIGS结构衬底低温层高温层缓冲层窗口层
    CIGS-refMo/MoCIGSCIGSCdSi-ZnO
    CIGS-topMo/MoCIGS/CGSCIGSCdSi-ZnO
    CIGS-midMo/MoCIGS/CGS/CIGSCIGSCdSi-ZnO
    CIGS-botMo/MoCGS/CIGSCIGSCdSi-ZnO
    CIGS-maxMo/MoCGSCIGSCdSi-ZnO
    下载: 导出CSV

    表 3  基于不同Ga梯度结构条件下制备的的CIGS太阳电池性能参数表

    Table 3.  Performance parameters of CIGS solar cells prepared under different Ga gradient structure conditions.

    样品 VOC/mV PCE/% FF/% JSC/(mA·cm–2)
    CIGS-ref 546 10.79 70.14 28.22
    CIGS-top 580 13.39 72.80 31.71
    CIGS-mid 614 15.04 70.21 34.81
    CIGS-bot 556 12.92 72.12 32.22
    CIGS-max 482 10.62 63.39 34.73
    下载: 导出CSV
  • [1]

    Cheng K, Shen X F, Liu J L, Liu X S, Du Z L 2021 Sol. Energy 217 70Google Scholar

    [2]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [3]

    Gao Q Q, Yuan S J, Zhou Z J, Kou D X, Zhou W H, Meng Y N, Qi Y F, Han L T, Wu S X 2022 Small 18 2203443Google Scholar

    [4]

    Wang Y H, Tu L H, Chang Y L , Lin S K, Lin T Y, Lai C H 2021 ACS Appl. Energy Mater. 4 11555Google Scholar

    [5]

    Hsu C H, Ho W H, Wei S Y, Lai C H 2017 Adv. Energy Mater. 7 1602571Google Scholar

    [6]

    Hsu C H, Su Y S, Wei S Y, Chen C H, Ho W H, Chang C, Wu Y H, Lin C J, Lai C H 2015 Prog. Photovolt. 23 1621Google Scholar

    [7]

    Dai W L, Gao Z R, Li J J, Qin S M, Wang R B, Xu H Y, Wang X Z, Gao C, Teng X Y, Zhang Y, Hao X J, Wang Y L, Yu W 2021 ACS Appl. Mater. Interfaces 13 49414Google Scholar

    [8]

    Wang Y H, Ho P H, Huang W C, Tu L H, Chang H F, Cai C H, Lai C H 2020 ACS Appl. Mater. Interfaces 12 28320Google Scholar

    [9]

    Kong Y F, Li J M, Ma Z Y, Chi Z, Xiao X D 2020 J. Mater. Chem. A. 8 9760Google Scholar

    [10]

    Hoang V Q, Jeon D H, Park H K, Kim S Y, Kim W H, Hwang D K, Lee J, Son D H, Yang K J, Kang J K, Jo W 2023 ACS Appl. Energy Mater. 6 12180Google Scholar

    [11]

    Giraldo S, Fonoll-Rubio R, Jehl Li-Kao Z, et al. 2020 Prog. Photovolt. 29 334Google Scholar

    [12]

    Wan X J, Yuan M Y, Zeng C H, Lin R X, Li D Y, Hong R J 2024 Sol. Energy 273 112510Google Scholar

    [13]

    Sun Y L, Qin S M, Ding D L, Gao H F, Zhou Q, Guo X Y, Gao C, Liu H X, Zhang Y, Yu W 2023 Chem. Eng. J. 455 140596Google Scholar

    [14]

    Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K 2021 Sol. Energy 227 13Google Scholar

    [15]

    Kim S T, Bhatt V, Kim Y C, Jeong H J, Yun J H, Jang J H 2022 J. Alloys Compd. 899 163301Google Scholar

    [16]

    Busacca A C, Rocca V, Curcio L, et al. 2014 International Conference on Renewable Energy Research and Application (ICRERA), IEEE Milwaukee, WI, USA, October 19–22, 2014 p964

    [17]

    Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S 2013 Appl. Phys. Lett. 103 143903Google Scholar

    [18]

    Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S C, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1900408Google Scholar

    [19]

    Zhao Y H, Yuan S J, Kou D X, Zhou Z J, Wang X S, Xiao H Q, Deng Y Q, Cui C C, Chang Q Q, Wu S X 2020 ACS Appl. Mater. 12 12717Google Scholar

    [20]

    Witte W, Abou-Ras D, Albe K, et al. 2015 Prog. Photovolt. 23 717Google Scholar

    [21]

    Venkatalaxmi A, Padmavathi B S, Amaranath T 2004 Fluid Dyn. Res. 35 229Google Scholar

    [22]

    Thompson C P, Chen L, Shafarman W N, Lee J, Fields S, Birkmire R W 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) Orleans, LA, USA, June 14–19, 2015 p1

    [23]

    Chantana J, Hironiwa D, Watanabe T, Teraji S, Kawamura K, Minemoto T 2015 Sol. Energy Mat. Sol. C. 133 223Google Scholar

    [24]

    Decock K, Khelifi S, Burgelman M 2011 Sol. Energy Mat. Sol. C. 95 1550Google Scholar

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响. 物理学报, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [3] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [4] 田淙升, 陈新亮, 刘杰铭, 张德坤, 魏长春, 赵颖, 张晓丹. 氢气引入对宽光谱Mg和Ga共掺杂ZnO透明导电薄膜的特性影响. 物理学报, 2014, 63(3): 036801. doi: 10.7498/aps.63.036801
    [5] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [6] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [7] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜. 物理学报, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [8] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [9] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [10] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [11] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [12] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [13] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [15] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [16] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [17] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [18] 邓联文, 江建军, 冯则坤, 张秀成, 何华辉. FeCoBSiO2磁性纳米颗粒膜的微波电磁特性. 物理学报, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [19] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  1130
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-07-17
  • 上网日期:  2024-07-25
  • 刊出日期:  2024-09-05

/

返回文章
返回