搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米耦合链中的局域化转变

古燕 陆展鹏

引用本文:
Citation:

非厄米耦合链中的局域化转变

古燕, 陆展鹏
cstr: 32037.14.aps.73.20240976

Localization transition in non-Hermitian coupled chain

Gu Yan, Lu Zhan-Peng
cstr: 32037.14.aps.73.20240976
PDF
HTML
导出引用
  • 本文研究了受复数准周期势调制的一维耦合链中系统的局域化特性. 通过研究发现随着无序强度增大的过程中, 系统会经历一个从完全扩展相到中间相, 再转变成完全局域相的局域转变. 通过数值求解不同的序参量证明了转变过程中完全扩展相, 具有迁移率边的中间相和完全局域相的存在. 并且通过解析推导, 可以精确求解出扩展相到中间相和中间相到局域相的局域化转变点. 此外, 还研究了系统能谱实-复转变与局域化转变之间的关系, 发现系统能谱可以经历两次实复转变. 即从完全扩展相到中间相的转变中, 会发生第一次实复转变, 部分能谱从实数谱转变为复数谱, 但是部分能谱依然保持为实数谱.当系统从中间相转变为完全局域相时, 系统能谱会完全转变为复数谱. 该研究结果为一维耦合链系统中局域化转变和实复转变的研究提供了一些新的理解和参考.
    In this paper, we study the properties of a coupled chain modulated by the quasiperiodic complex potential. It is found that as the disorder strength increases, the system undergoes a localization transition from a fully extended phase to an intermediate phase, and then to a fully localized phase. The numerical solving of order parameters such as the average inverse participation ratio and the average normalized participation ratio, demonstrate that the fully extended phase, the intermediate phase with mobility edges, and the fully localized phase are all existent during the transition. The scalar analysis of the normalized participation ratio, confirms the stable existence of three different localization phases in the system. Moreover, the analytical derivation, shows that the localization transition from the extended phase to the intermediate phase and from the intermediate phase to the localized phase can be precisely determined. In addition, the local phase diagram of the system is also obtained by numerical calculation, as shown in Fig. (a). The regions for the extended, intermediate and localized phases are denoted by I-a (I-b), II, and III, respectively. The three black solid lines represent the localization transition points determined by the analytical results. One can see that the analytical results match the numerical results. Moreover, we discuss that the relationship between the real-complex spectrum transition and the localization transition. It is found that the energy spectrum of the system can undergo two real-to-complex transitions. Specifically, during the transition from the fully extended phase to the intermediate phase, the first real-complex transition occurs, where part of the energy spectrum changes from the real spectrum to the complex spectrum, while another part spectrum remains real. When the system transitions from the intermediate phase to the fully localized phase, the energy spectrum completely transforms into a complex spectrum. These research results provide a reference for the study of localization transitions and real-complex transitions in one-dimensional coupled chain systems, and also offer a new perspective for the study of localization.
      通信作者: 陆展鹏, 201712605002@email.sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205176)和高层次人才科研启动项目(批准号: RCK202231)资助的课题.
      Corresponding author: Lu Zhan-Peng, 201712605002@email.sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205176) and the High-level Talent Research Start-up Project, China (Grant No. RCK202231).
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52Google Scholar

    [5]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [6]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [7]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [8]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [9]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [10]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204Google Scholar

    [11]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [12]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [13]

    Lin X S, Chen X M, Guo G C, Gong M 2023 Phys. Rev. B 108 174206Google Scholar

    [14]

    Ahmed A, Roy N, Sharma A 2023 Phys. Rev. B 107 245110Google Scholar

    [15]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [16]

    Bodyfelt J D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [17]

    陆展鹏, 徐志浩 2024 物理学报 73 037202Google Scholar

    Lu Z P, Xu Z H 2024 Acta Phys. Sin. 73 037202Google Scholar

    [18]

    吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 物理学报 71 113702Google Scholar

    Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702Google Scholar

    [19]

    Xu Z H, Xia X, Chen S 2022 Sci. China-Phys. Mech. Astron. 65 227211Google Scholar

    [20]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [21]

    Rossignolo M, DellÁnna L 2019 Phys. Rev. B 99 054211Google Scholar

    [22]

    Jazaeri A, Satija I I 2001 Phys. Rev. E 63 036222Google Scholar

    [23]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [24]

    Li X, Sarma S D 2020 Phys. Rev. B 101 064203Google Scholar

    [25]

    Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203Google Scholar

    [26]

    Zuo Z W, Kang D 2022 Phys. Rev. A 106 013305Google Scholar

    [27]

    Liu T, Cheng S J 2023 Chin. Phys. B 32 027102Google Scholar

    [28]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [29]

    Budich J C, Bergholtz E J 2020 Phys. Rev. Lett. 125 180403Google Scholar

    [30]

    Longhi S 2019 Phys. Rev. B 100 125157Google Scholar

  • 图 1  一维耦合链示意图, $ t_1 $代表相同原子链的最近邻跃迁, $ t_0^{\mathrm{d}} $代表不同原子链间的横向跃迁, $ t_1^{\mathrm{d}} $代表不同原子链间的交叉跃迁

    Fig. 1.  Schematic diagram of the one-dimensional coupled chain, $ t_1 $ represents the nearest-neighbor hopping within the same atomic chain, $ t_0^{\mathrm{d}} $ represents the transverse hopping between different atomic chains, $ t_1^{\mathrm{d}} $ represents the cross hopping between different atomic chains.

    图 2  (a)当$ t_0^{\mathrm{d}}=0.5 $, $ t_1^{\mathrm{d}}=0.2 $和$ L=610 $时, 逆参与率(IPR)随着本征能量的实部$ ({\rm{Re}}(E)) $和无序强度λ的变化, 图中的颜色条代表逆参与率(IPR)的大小. (b)随着系统无序强度λ由小变大, MIPR和MNPR的变化趋势, 分别由蓝色和红色实线表示. 图(a), (b)中蓝色和黑色虚线代表由(10)式确定的系统的两个局域化转变点

    Fig. 2.  (a) When $ t_0^{\mathrm{d}}=0.5 $, $ t_1^{\mathrm{d}}=0.2 $ and $ L=610 $, IPR varies with the real part of the eigenenergy $ ({\rm Re}{(E)}) $ and disorder strength λ, the colorbar represents the magnitude of IPR. (b) As the disorder strength λ of the system increases from weak to strong, the trends of MIPR and MNPR are represented by the blue and red solid lines, respectively; the blue and black dashed lines in Figs. (a) and (b) represent the two localization transition points of the system determined by Eq.(10).

    图 3  不同相区内MNPR的标度行为, 其中$ t_0^{\mathrm{d}}=0.5 $ 和$ t_1^{\mathrm{d}}=0.2 $ (a)扩展相区($ \lambda=0.3 $); (b)中间相区($ \lambda=1.1 $); (c)局域相区($ \lambda=1.5 $)

    Fig. 3.  Scaling behavior of MNPR in different phases with $ t_0^{\mathrm{d}}=0.5 $ and $ t_1^{\mathrm{d}}=0.2 $: (a) The extended phase ($ \lambda=0.3 $); (b) the intermediate phase ($ \lambda=1.1 $); (c) the localized phase ($ \lambda=1.5 $).

    图 4  $ t_1^{\mathrm{d}} \text-\lambda $参数平面内的局域化相图, 其中Ⅰ-a (Ⅰ-b)表示扩展相, Ⅱ代表具有迁移率边的中间相, Ⅲ表示局域相. 3条黑色实线是根据(10)式确定的局域化相变点, 颜色条代表序参量η的大小, 其中$ L=800 $, $ t_0^{\mathrm{d}}=0.5 $

    Fig. 4.  Localization phase diagram in the $ t_1^{\mathrm{d}} \text-\lambda $ plane, and the regions for the extended, intermediate and localized phases are denoted by Ⅰ-a (Ⅰ-b), Ⅱ, and Ⅲ, respectively. Three black solid lines represent the localization transition points determined by Eq.(10), and the colorbar represents values of η. Here, $ L=800 $ and $ t_0^{\mathrm{d}}=0.5 $.

    图 5  (a)本征能量的虚部Im(E)随着无序强度λ的变化, 其中黑色虚线由(10)式确定; (b)—(e)当无序强度$ \lambda=0.4, 0.7, 0.9 $ 和$ 1.3 $时, 系统的能谱. 其他参数为$ L=610 $, $ t_0^{\mathrm{d}}=0.5 $和$ t_1^{\mathrm{d}}=0.2 $

    Fig. 5.  (a) The imaginary part of the energy Im(E) varies with disorder strength λ, where the black dashed line is given by Eq.(10); (b)–(e) the energy spectrum of the system for $ \lambda = 0.4, 0.7, 0.9 $ and $ 1.3 $. Other parameters: $ L=610 $, $ t_0^{\mathrm{d}}=0.5 $ and $ t_1^{\mathrm{d}}=0.2 $.

    图 A1  $ t_1^{\mathrm{d}} \text-\lambda $参数空间中系统的局域化相图. 浅蓝色区域代表扩展相或者局域相, 棕色区域代表有迁移率边的中间相, 颜色条代表序参量η值, 其中$ L=800 $, $ t_0^{\mathrm{d}}=0.5 $ (a) $ \varepsilon_{A, n}=\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $, $ \varepsilon_{B, n}=3\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $; (b) $ \varepsilon_{A, n}=2\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $, $ \varepsilon_{B, n}=5\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $

    Fig. A1.  Localization phase diagram in the $ t_1^{\mathrm{d}} \text-\lambda $ plane for (a)$ \varepsilon_{A, n}=\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $, $ \varepsilon_{B, n}=3\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $ and (b) $ \varepsilon_{A, n}= $$ 2\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $, $ \varepsilon_{B, n}=5\lambda {\mathrm{e}}^{{\mathrm{i}}2\pi\alpha n} $. The light blue region represents the extended phase or localized phase, while the brown region represents the intermediate phase with the mobility edges, the colorbar represents values of η, here, $ L=800 $ and $ t_0^{\mathrm{d}} =0.5 $.

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52Google Scholar

    [5]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [6]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [7]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [8]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [9]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [10]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204Google Scholar

    [11]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [12]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [13]

    Lin X S, Chen X M, Guo G C, Gong M 2023 Phys. Rev. B 108 174206Google Scholar

    [14]

    Ahmed A, Roy N, Sharma A 2023 Phys. Rev. B 107 245110Google Scholar

    [15]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [16]

    Bodyfelt J D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [17]

    陆展鹏, 徐志浩 2024 物理学报 73 037202Google Scholar

    Lu Z P, Xu Z H 2024 Acta Phys. Sin. 73 037202Google Scholar

    [18]

    吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 物理学报 71 113702Google Scholar

    Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702Google Scholar

    [19]

    Xu Z H, Xia X, Chen S 2022 Sci. China-Phys. Mech. Astron. 65 227211Google Scholar

    [20]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [21]

    Rossignolo M, DellÁnna L 2019 Phys. Rev. B 99 054211Google Scholar

    [22]

    Jazaeri A, Satija I I 2001 Phys. Rev. E 63 036222Google Scholar

    [23]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [24]

    Li X, Sarma S D 2020 Phys. Rev. B 101 064203Google Scholar

    [25]

    Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203Google Scholar

    [26]

    Zuo Z W, Kang D 2022 Phys. Rev. A 106 013305Google Scholar

    [27]

    Liu T, Cheng S J 2023 Chin. Phys. B 32 027102Google Scholar

    [28]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [29]

    Budich J C, Bergholtz E J 2020 Phys. Rev. Lett. 125 180403Google Scholar

    [30]

    Longhi S 2019 Phys. Rev. B 100 125157Google Scholar

  • [1] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象. 物理学报, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [2] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [3] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [5] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [6] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [7] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220511
    [8] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, 2022, 71(13): 130301. doi: 10.7498/aps.70.20220511
    [9] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [10] 潘磊. 非厄米线性响应理论及其应用. 物理学报, 2022, 71(17): 170305. doi: 10.7498/aps.71.20220862
    [11] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [12] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [13] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [14] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [15] 徐志浩, 皇甫宏丽, 张云波. 一维准周期晶格中玻色子对的迁移率边. 物理学报, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [16] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响. 物理学报, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [17] 侯碧辉, 刘凤艳, 岳明, 王克军. 纳米金属镝的传导电子定域化. 物理学报, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [18] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [19] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [20] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
计量
  • 文章访问数:  746
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-13
  • 修回日期:  2024-08-16
  • 上网日期:  2024-09-03
  • 刊出日期:  2024-10-05

/

返回文章
返回