-
溶液法制备钙钛矿多晶薄膜过程中, 不仅使用有毒溶剂配置前驱液, 而且热处理仍是诱导钙钛矿晶粒生长的主要途径, 这项工艺会增加能耗, 还阻碍柔性电池的发展. 为消除有毒溶剂的使用和高温处理, 本文通过低温溶液加工CsPbBr3纳晶薄膜获得相应的多晶薄膜, 应用到太阳电池中. 首先热注入法制备CsPbBr3纳米晶墨汁前驱液, 并采用旋涂法制备其纳晶薄膜. 大气环境下, CsPbBr3纳晶薄膜经Pb(SCN)2与NH4Br乙酸甲酯饱和溶液处理制备CsPbBr3多晶薄膜, 将其作为吸收层制备钙钛矿太阳电池, 有效提高了电池的性能, 电池效率达到8.43%. 研究表明, Pb(SCN)2与NH4Br乙酸甲酯(MA)饱和溶液不仅可以使纳晶继续结晶生长, 同时还可以有效地钝化钙钛矿薄膜中的缺陷. 采用该方法制备CsPbBr3多晶薄膜过程中, 既无高温处理, 也无高沸点毒性溶剂的使用, 同时适用于刚性和柔性电池的制备.
In the process of preparing perovskite polycrystalline films by solution method, toxic solvents are used, and heat treatment is still the main way to induce perovskite grain growth, which not only increases energy consumption, but also hinders the development of flexible solar cells. In order to avoid the use of toxic solvents and high-temperature process, CsPbBr3 nanocrystal films are treated with low temperature solution to obtain corresponding polycrystalline thin films, which are applied to solar cells. Firstly, CsPbBr3 nanocrystalline (nanocrystalline NC) ink precursor is prepared by hot injection method, and nanocrystalline film is prepared by spinning coating method. In atmospheric environment, CsPbBr3 nanocrystalline films are prepared by saturated solution of Pb(SCN)2 and NH4Br methyl acetate. Using the CsPbBr3 nanocrystalline film as an absorbing layer, the perovskite solar cell is prepared and the performance of the cell is effectively improved, and the efficiency of the cell reaches 8.43%. The results show that the saturated solution of Pb(SCN)2 and NH4Br methyl acetate (MA) can not only continue the nanocrystalline crystallization, but also effectively passivate the defects in the perovskite films. In the process of preparing CsPbBr3 polycrystalline films, neither high temperature treatment nor the high boiling point toxic solvent is used, which is suitable for the preparation rigid and flexible solar cells. The inorganic halide perovskite nanocrystals are developed and used as “ink” to fabricate fully air-processed, electrically stable solar cells. Although the prepared film is composed of mosaic nanocrystals capped with a large number of organic ligands and surface traps, this method provides a new approach for single-step, large-scale fabrication of inorganic perovskite devices. Moreover, the flexible control of the material composition provides a platform for uncovering the optimal conditions for optoelectronics and photonics. -
Keywords:
- CsPbBr3 /
- nanocrystalline /
- polycrystalline /
- perovskite solar cells
[1] Bai W H, Xuan T T, Zhao H Y, Dong H R, Xie R J 2023 Adv. Mater. 35 2302283Google Scholar
[2] Zhang J X, Zhang G Z, Su P Y, Huang R, Lin J G, Wang W R, Pan Z X, Rao H S 2023 Angew. Chem. Int. Ed. 62 e202303486Google Scholar
[3] Xu T F, Xiang W C, Yang J J, J. Kubicki D, Tress W G, Chen T, Fang Z M, Liu Y L, Liu S Z 2023 Adv. Mater. 35 2303346
[4] Zhang X S, Wang Q, Jin Z W, Zhang J R, Liu S Z 2017 Nanoscale 9 6278Google Scholar
[5] 陈莹, 李富强 2024 太阳能学报 45 123
Chen Y, Li F Q 2024 Acta Energiae Solaris Sin. 45 123
[6] Wang Y H, Zheng W, Ji H, Shen D P, Zhang Y H, Han Y K, Gao J W, Qiang L, Liu H, Han L, Zhang Y 2021 Adv. Mater. Interfaces 8 2100279Google Scholar
[7] Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418
[8] Feng S N, Qin Q L, Han X P, Zhang C F, Wang X Y, Yu T, Xiao M 2022 Adv. Mater. 34 2106278
[9] Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Wang Q, Liu S Z 2018 ACS Appl. Mater. Interfaces 10 7145
[10] Lin H, Wei Q, Ng KW, Dong J Y, Li J L, Liu W W, Yan S S, Chen S, Xing G C, Tang X S, Tang Z K, Wang S P 2021 Small 17 2101359Google Scholar
[11] Sun J Y, Zhao X, Si H N, Gao F F, Zhao B, Ouyang T, Li Q, Liao Q L, Zhang Y 2023 Adv. Opt. Mater. 11 2202877Google Scholar
[12] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬 2023 物理学报 72 168101
Yang M L, Zou L, Cheng J J, Wang J M, Jiang Y F, Hao H Y, Xing J, Liu H, Fan Z J, Dong J J 2023 Acta Phys. Sin. 72 168101
[13] Xie G X, Li Q L, Lu X C, Li L T 2024 11 3365Google Scholar
[14] Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar
[15] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T 2016 J. Phys. Chem. Lett. 7 746Google Scholar
[16] Zhang S J, Guo R, Zeng H P, Zhao Y, Liu X Y, You S, Li M, Luo L, Lira-Cantu M, Li L, Liu F X, Zheng X, Liao G L, Li X 2022 Energy Environ. Sci. 15 244
[17] Li M H, Jiao B X, Peng Y C, Zhou J J, Tan L G, Ren N Y, Ye Y R, Liu Y, Yang Y, Chen Y, Ding L M, Yi C Y 2024 Adv. Mater. 36 2406532Google Scholar
[18] Hailegnaw B, Demchyshyn S, Putz C, Lehner L E, Mayr F, Schiller D, Pruckner R, Cobet M, Ziss D, Krieger T M, Rastelli A, Sariciftci N S, Scharber M C, Kaltenbrunner M 2024 Nat. Energy 9 677Google Scholar
[19] Chin X Y, Turkay D, Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M, Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar
[20] Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar
[21] Doolin A J, Charles R G, De Castro C S P, Garcia Rodriguez R, Vincent Péan E, Rahul P, Dunlop T, Charbonneau C, Watson T, Lloyd Davies M 2021 Green Chem. 23 2471Google Scholar
[22] Zhang X S, Cao Y, Feng J S, Liu S Z 2024 Solar RRL 8 20230087
[23] Shi W B, Zhang X, Chen H S, Matras-Postolek K, Yang P 2022 J. Mater. Chem. C. 10 13117Google Scholar
[24] Ma J J, Qin M C, Li P W, Han L Y, Zhang Y Q, Song Y L 2022 Energy Environ. Sci. 15 413
[25] Jia D L, Chen J X, Mei X Y, Fan W T, Luo S, Yu M, Liu J H, Zhang X L 2021 Energy Environ. Sci. 14 4599
[26] Liu H, Worku M, Mondal A, Blessed Shonde T, Chaaban M, Ben-Akacha A, Lee S J, Gonzalez F, Olasupo O, Lin X S, Raaj Vellore Winfred J S, Xin Y, Lochner E, Ma B W 2023 Adv. Energy Mater. 13 2201605Google Scholar
[27] Zhao C, Li Y K, Ye W G, Shen X F, Wen Z C, Yuan X Y, Cao Y G, Ma C Y 2022 Adv. Opt. Mater. 10 2102200Google Scholar
[28] Christopher B M 2009 Science 324 1276Google Scholar
[29] Liao C H, Chen C H, Bing J M, Bailey C, Lin Y T, Pandit T M, Granados L, Zheng J H, Tang S, Lin B H, Yen H W, McCamey Dane R, Kennedy Brendan J, Chueh C C, Ho-Baillie Anita W Y 2022 Adv. Mater. 34 2104782Google Scholar
[30] Yan N, Cao Y, Jin Z W, Liu Y C, Liu S Z, Fang Z M, Feng J S 2024 Adv. Mater. 36 2403682Google Scholar
[31] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福 2024 物理学报 73 078401
Wang H, Zheng D X, Jiang X, Cao Y X, Du M Y, Wang K, Liu S Z, Zhang C F 2024 Acta Phys. Sin. 73 078401
[32] Song J Z, Cui Q Z, Li J H, Xu J Y, Wang Y, Xu L M, Xue J, Dong Y H, Tian T, Sun H D, Zeng H B 2017 Adv. Opt. Mater. 5 1700157Google Scholar
-
图 1 CsPbBr3纳晶 (a) X射线衍射图; (b) TEM图; (c) SEM图; (d) 多晶薄膜的SEM图, 内插照片分别为纳晶墨汁、纳晶及多晶薄膜在自然光和紫外灯照射下荧光; (e), (f) CsPbBr3纳晶墨汁、纳米晶薄膜和多晶薄膜的(e) 紫外-可见吸收光谱和(f)光致发光光谱图, NC代表纳米晶
Fig. 1. CsPbBr3 nanocrystalline: (a) XRD spectrum, (b) TEM image; (c) SEM image; (d) SEM image of polycrystalline film, the interpolated photos show the fluorescence emission of nanocrystalline ink, nanocrystalline and polycrystalline films under natural light and ultraviolet lamps, respectively; (e) UV-VIS absorption spectra and (f) photoluminescence spectra of CsPbBr3 nanocrystalline ink, nanocrystalline film and polycrystalline film, NC in the figures represents nanocrystalline.
图 2 CsPbBr3钙钛矿太阳电池的截面图 (a) 纳晶薄膜; (b) 纳晶团聚结晶; (c), (d) 纳晶薄膜经饱和溶液分别处理15 s和30 s所得的多晶薄膜. 钙钛矿薄膜表面形貌 (e) 纳晶薄膜; (f) 纳晶团聚薄膜; (g), (h) 分别对应图(c), (d)多晶薄膜
Fig. 2. Cross-sectional SEM images of CsPbBr3 perovskite solar cells: (a) Nanocrystalline; (b) nanocrystalline agglomerative crystals; (c), (d) polycrystalline films obtained by treating nanocrystalline films with saturated solution for 15 s and 30 s, respectively. Morphology of perovskite films: (e) Nanocrystalline film; (f) nanocrystalline agglomerative film; (g), (h) corresponding to panels (c), (d) polycrystalline films, respectively.
图 3 CsPbBr3钙钛矿太阳能电池的(a) J-V和(b) EQE曲线, 图中NC film表示纳晶薄膜器件, 15 s PC film和30 s PC film分别代表纳晶薄膜经饱和溶液分别处理15 s和30 s所得的多晶薄膜器件
Fig. 3. (a) J-V curves and (b) EQE curve of CsPbBr3 perovskite solar cells, where NC represents nanocrystalline film, 15 s PC film and 30 s PC film represent devices of polycrystalline film obtained by nanocrystalline film treated with saturated solution for 15 s and 30 s, respectively.
图 4 (a) CsPbBr3纳晶及经饱和溶液处理15 s和30 s所得多晶薄膜的XRD谱; (b) 薄膜正面照射所得PL光谱(激光激发波长为375 nm); (c) 时间分辨荧光光谱图; (d) 单电子器件的暗态I-V曲线 (内插图单电子器件的结构)
Fig. 4. (a) XRD patterns of CsPbBr3 nanocrystalline and polycrystalline films obtained by treating it with saturated solution for 15 s and 30 s; (b) PL spectrum obtained by positive irradiation of the films (laser excitation wavelength is 375 nm); (c) time-resolved fluorescence spectrum; (d) dark state I-V curves of single electron device (internal illustration of the structure of single electron device).
表 1 3种薄膜所制备太阳能电池光伏性能及电学参数
Table 1. Photovoltaic properties and electrical parameters of solar cells prepared by three thin films.
Device VOC/V JSC/
(mA·cm–2)FF/% PCE/% Rs/Ω NC film 最大值 1.49 5.62 64.1 5.36 261.4 平均值 1.46 5.61 63.8 5.23 — 15 s PC film 最大值 1.47 6.34 74.2 6.92 71.7 平均值 1.46 6.34 73.5 6.80 — 30 s PC film 最大值 1.55 6.96 78.1 8.43 65.9 平均值 1.54 6.94 77.9 8.35 — 表 2 3种薄膜薄膜的时间分辨荧光的拟合参数
Table 2. Fitting parameters of time-resolved photoluminescence of three thin films.
器件类型 平均寿命
τave /ns寿命
τ1 /ns权重
A1寿命
τ2/ ns权重
A2FTO/TiO2/NC film 14.60 19.71 261945 9.73 556783 FTO/TiO2/15 s PC film 4.36 4.36 875893 4.36 875893 FTO/TiO2/30 s PC film 2.13 2.13 3112950 2.13 3112950 -
[1] Bai W H, Xuan T T, Zhao H Y, Dong H R, Xie R J 2023 Adv. Mater. 35 2302283Google Scholar
[2] Zhang J X, Zhang G Z, Su P Y, Huang R, Lin J G, Wang W R, Pan Z X, Rao H S 2023 Angew. Chem. Int. Ed. 62 e202303486Google Scholar
[3] Xu T F, Xiang W C, Yang J J, J. Kubicki D, Tress W G, Chen T, Fang Z M, Liu Y L, Liu S Z 2023 Adv. Mater. 35 2303346
[4] Zhang X S, Wang Q, Jin Z W, Zhang J R, Liu S Z 2017 Nanoscale 9 6278Google Scholar
[5] 陈莹, 李富强 2024 太阳能学报 45 123
Chen Y, Li F Q 2024 Acta Energiae Solaris Sin. 45 123
[6] Wang Y H, Zheng W, Ji H, Shen D P, Zhang Y H, Han Y K, Gao J W, Qiang L, Liu H, Han L, Zhang Y 2021 Adv. Mater. Interfaces 8 2100279Google Scholar
[7] Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418
[8] Feng S N, Qin Q L, Han X P, Zhang C F, Wang X Y, Yu T, Xiao M 2022 Adv. Mater. 34 2106278
[9] Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Wang Q, Liu S Z 2018 ACS Appl. Mater. Interfaces 10 7145
[10] Lin H, Wei Q, Ng KW, Dong J Y, Li J L, Liu W W, Yan S S, Chen S, Xing G C, Tang X S, Tang Z K, Wang S P 2021 Small 17 2101359Google Scholar
[11] Sun J Y, Zhao X, Si H N, Gao F F, Zhao B, Ouyang T, Li Q, Liao Q L, Zhang Y 2023 Adv. Opt. Mater. 11 2202877Google Scholar
[12] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬 2023 物理学报 72 168101
Yang M L, Zou L, Cheng J J, Wang J M, Jiang Y F, Hao H Y, Xing J, Liu H, Fan Z J, Dong J J 2023 Acta Phys. Sin. 72 168101
[13] Xie G X, Li Q L, Lu X C, Li L T 2024 11 3365Google Scholar
[14] Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar
[15] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T 2016 J. Phys. Chem. Lett. 7 746Google Scholar
[16] Zhang S J, Guo R, Zeng H P, Zhao Y, Liu X Y, You S, Li M, Luo L, Lira-Cantu M, Li L, Liu F X, Zheng X, Liao G L, Li X 2022 Energy Environ. Sci. 15 244
[17] Li M H, Jiao B X, Peng Y C, Zhou J J, Tan L G, Ren N Y, Ye Y R, Liu Y, Yang Y, Chen Y, Ding L M, Yi C Y 2024 Adv. Mater. 36 2406532Google Scholar
[18] Hailegnaw B, Demchyshyn S, Putz C, Lehner L E, Mayr F, Schiller D, Pruckner R, Cobet M, Ziss D, Krieger T M, Rastelli A, Sariciftci N S, Scharber M C, Kaltenbrunner M 2024 Nat. Energy 9 677Google Scholar
[19] Chin X Y, Turkay D, Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M, Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar
[20] Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar
[21] Doolin A J, Charles R G, De Castro C S P, Garcia Rodriguez R, Vincent Péan E, Rahul P, Dunlop T, Charbonneau C, Watson T, Lloyd Davies M 2021 Green Chem. 23 2471Google Scholar
[22] Zhang X S, Cao Y, Feng J S, Liu S Z 2024 Solar RRL 8 20230087
[23] Shi W B, Zhang X, Chen H S, Matras-Postolek K, Yang P 2022 J. Mater. Chem. C. 10 13117Google Scholar
[24] Ma J J, Qin M C, Li P W, Han L Y, Zhang Y Q, Song Y L 2022 Energy Environ. Sci. 15 413
[25] Jia D L, Chen J X, Mei X Y, Fan W T, Luo S, Yu M, Liu J H, Zhang X L 2021 Energy Environ. Sci. 14 4599
[26] Liu H, Worku M, Mondal A, Blessed Shonde T, Chaaban M, Ben-Akacha A, Lee S J, Gonzalez F, Olasupo O, Lin X S, Raaj Vellore Winfred J S, Xin Y, Lochner E, Ma B W 2023 Adv. Energy Mater. 13 2201605Google Scholar
[27] Zhao C, Li Y K, Ye W G, Shen X F, Wen Z C, Yuan X Y, Cao Y G, Ma C Y 2022 Adv. Opt. Mater. 10 2102200Google Scholar
[28] Christopher B M 2009 Science 324 1276Google Scholar
[29] Liao C H, Chen C H, Bing J M, Bailey C, Lin Y T, Pandit T M, Granados L, Zheng J H, Tang S, Lin B H, Yen H W, McCamey Dane R, Kennedy Brendan J, Chueh C C, Ho-Baillie Anita W Y 2022 Adv. Mater. 34 2104782Google Scholar
[30] Yan N, Cao Y, Jin Z W, Liu Y C, Liu S Z, Fang Z M, Feng J S 2024 Adv. Mater. 36 2403682Google Scholar
[31] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福 2024 物理学报 73 078401
Wang H, Zheng D X, Jiang X, Cao Y X, Du M Y, Wang K, Liu S Z, Zhang C F 2024 Acta Phys. Sin. 73 078401
[32] Song J Z, Cui Q Z, Li J H, Xu J Y, Wang Y, Xu L M, Xue J, Dong Y H, Tian T, Sun H D, Zeng H B 2017 Adv. Opt. Mater. 5 1700157Google Scholar
计量
- 文章访问数: 234
- PDF下载量: 5
- 被引次数: 0