搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三模晶体相场法研究应变诱导石墨烯晶界位错演化

高丰 李欢庆 宋卓 赵宇宏

引用本文:
Citation:

三模晶体相场法研究应变诱导石墨烯晶界位错演化

高丰, 李欢庆, 宋卓, 赵宇宏
cstr: 32037.14.aps.73.20241368

Strain induced dislocation evolution at graphene grain boundary by three-mode phase-field crystal method

Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong
cstr: 32037.14.aps.73.20241368
PDF
HTML
导出引用
  • 晶界结构在石墨烯变形过程中的演变规律及作用机制对理解石墨烯变形行为具有重要意义. 本文采用三模晶体相场模型, 在原子尺度上深入研究了石墨烯小角对称倾侧晶界处位错在应变作用下的演化机理. 结果发现, 随着晶界角的增大, 晶界位错密度降低, 特定类型的位错(5|8|7位错和5|7位错)数量上升. 在与晶界平行的应力加载下, 晶界处位错因C—C键断裂或旋转, 转化为5|7或5|9型位错, 这是由于较大自由能的位错在拉伸下演化为小能量的位错, 这有利于石墨烯性能的提高. 拉伸载荷下, 含不同角度晶界的体系自由能变化呈现相同趋势: 初始下降至拐点后出现异常上升, 位错行为不能有效缓解体系因持续加载造成的应力集中, 导致失效. 本工作有助于从原子尺度理解石墨烯微观力学行为.
    The evolution law and mechanism of grain boundary structure in the deformation process of graphene are of great significance for understanding the deformation behavior of graphene and optimizing its mechanical properties. In this work, single-layer graphene is taken as the research object and a double crystalline graphene model is established by using the three-mode phase-field crystal method, thereby in depth ascertaining the evolution mechanism of dislocations at small-angle symmetrical tilt grain boundaries in graphene under strain. In view of the relaxation and deformation process, the relationship between the number of multiple dislocations and the grain boundary angle of graphene is studied on an atomic scale, and the deformation and failure mechanism of double crystalline graphene under tensile load are revealed, and also discussed from the perspective of the free energy.It is found that, after relaxation, with the increase of grain boundary angle, the density of dislocations at the grain boundary decreases, and the number of specific types of dislocations (5|8|7 and 5|7 dislocations) increases. Under stress loading parallel to the grain boundary, the changes of free energy of the systems containing grain boundaries with different angles show the same trend: at first, they fall to the inflection point and then rise abnormally, and the dislocation behavior cannot effectively alleviate the stress concentration caused by continuous loading in the system, leading to failure finally.Under tensile load, the free energy changes of the systems are divided into four stages, they being stage (I), in which the dislocations at grain boundaries are slightly deformed but do not change their structure, stage (II), in which dislocations at the grain boundaries are transformed into 5|7 or 5|9 dislocation due to C—C bond fracture or rotation, and the dislocations that are “incompatible” have higher energy, making them more conducive to improving the tensile properties of graphene, stage (III), in which the 5|7 and 5|9 dislocations begin to fail, and the free energy shows a tendency to decrease significantly, and stage (IV), in which the double crystalline graphene systems are completely in failure. The system with a grain boundary angle of 10° exhibits the most substantial deduction in free energy in stages (I), (II), and (III), and possesses the highest overall tensile strength.This work contributes to understanding the micromechanical behavior of graphene on an atomic scale.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52074246, 52275390, 52205429, 52201146)、国防基础科研项目(批准号: JCKY2020408B002)、山西省重点研发计划(批准号: 202102050201011)和中央引导地方计划(批准号: YDZJSX2022A025, YDZJSX2021A027)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 52275390, 52205429, 52201146), the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020408B002), the Key Research and Development Program of Shanxi Province, China (Grant No. 202102050201011), and the Guiding Local Science and Technology Development Projects by the Central Government (Grant Nos. YDZJSX2022A025, YDZJSX2021A027).
    [1]

    林彰乾, 郑伟, 李浩, 王东君 2021 金属学报 57 111Google Scholar

    Lin Z Q, Zhen W, Li H, Wang D J 2021 Acta. Metall. Sin. 57 111Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Liu J, Hei L F, Song J H, Li C M, Tang W Z, Chen G C, Lu F X 2014 Diam. Relat. Mater. 46 42Google Scholar

    [5]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. 2011 Nature 469 389Google Scholar

    [6]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [7]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582Google Scholar

    [8]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z H 2014 Carbon 75 124Google Scholar

    [9]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [10]

    Shekhawat A, Ritchie R O 2016 Nat. Commun. 7 10546Google Scholar

    [11]

    Zhang J F, Zhao J J, Lu J P 2012 ACS Nano 6 2704Google Scholar

    [12]

    Heo J, Han J 2023 Nanotechnology 34 415704Google Scholar

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [14]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [15]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [16]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501Google Scholar

    [17]

    Zhao Y H, Tian X L, Zhao B J, et al. 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [18]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [19]

    Guo Q W, Hou H, Wang K L, Li M X, Liaw P K, Zhao Y H 2023 npj Comput. Mater. 9 185Google Scholar

    [20]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [21]

    Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Chen L Q, Zhao Y H 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [24]

    Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613Google Scholar

    [25]

    Zhao Y H, Xing H, Zhang L J, et al. 2023 Acta Metall. Sin. (Engl. Lett. ) 36 1749Google Scholar

    [26]

    Zhao Y H 2024 npj Comput. Mater. 2 e44Google Scholar

    [27]

    Zhao Y H 2023 npj Comput. Mater. 9 94Google Scholar

    [28]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [29]

    Song Z, Li H Q, Wang X N, Tian X L, Hou H, Zhao Y H 2023 J. Mater. Res. Technol. 27 6501Google Scholar

    [30]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [31]

    Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy V B 2013 Nano Lett. 13 5692Google Scholar

    [32]

    Li H Q, Wang X N, Zhang H B, Tian X L, Hou H, Zhao Y H 2022 Front. Mater. 9 875519Google Scholar

    [33]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [34]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng. 849 143485Google Scholar

    [35]

    Zhao Y H, Liu K X, Zhang H B, Tian X L, Jiang Q L, Murugadoss V, Hou H 2022 Adv. Compos. Hybrid Mater. 5 2546Google Scholar

    [36]

    Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, Zettl A 2011 ACS Nano 5 2142Google Scholar

    [37]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [38]

    Hirvonen P, Ervasti M M, Fan Z, et al. 2016 Phys. Rev. B 94 035414Google Scholar

    [39]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Micro Nanostruct. 129 163Google Scholar

    [40]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

  • 图 1  模拟结构示意图(${\theta _1}$为晶粒1取向角, ${\theta _2}$为晶粒2取向角)

    Fig. 1.  Schematic diagram of simulation structure, ${\theta _1}$ is grain 1 orientation angle, ${\theta _2}$ is grain 2 orientation angle.

    图 2  石墨烯气相结晶图(蓝、绿、黄色标记石墨烯的五角元胞、七角元胞、八角元胞) (a)—(d)晶界角分别为4°, 6°, 8°, 10°, 其中黑框中为晶界处位错; (a1)—(a3), (b1)—(b3), (c1)—(c3), (d1)—(d3)是对应的放大图

    Fig. 2.  Vapor crystallization diagram of graphene: (a)–(d) Grain boundary angles are 4°, 6°, 8° and 10°, respectively, dislocations at grain boundaries are shown in the black box; (a1)–(a3), (b1)–(b3), (c1)–(c3), (d1)–(d3) are the corresponding enlarged images. Blue, green, yellow labeled graphene pentagonal cells, heptagonal cells, octagonal cells

    图 3  双晶石墨烯体系中晶界处位错数目统计结果 (a) 晶界角为4°—10°的总位错数目; (b) 晶界角为4°—10°的各种位错数目

    Fig. 3.  Statistical results of the number of dislocations at the grain boundaries in the double crystalline graphene system: (a) Total number of dislocations at grain boundary angles of 4°–10°; (b) number of various dislocations at grain boundary angles of 4°–10°.

    图 4  石墨烯晶界5|7位错在应变下的演化图 (A)—(C), (D)—(G), (H)—(I), (J)—(L)分别对应晶界角为4°, 6°, 8°, 10°的石墨烯晶界5|7位错在应变下的演化图; (a)—(c), (d)—(g), (h)—(i), (j)—(l)为对应的演化过程示意图; (A)—(C)的应变$\varepsilon $分别为0, 0.0297, 0.0352; (D)—(G) 的应变$\varepsilon $分别为0, 0.0286, 0.0308, 0.0352; (H), (I) 的应变$\varepsilon $分别为0, 0.0363; (J)—(L) 的应变$\varepsilon $分别为0, 0.0297, 0.0363 (演化过程示意图中标记的5, 7, 8, 9分别代表石墨烯五、七、八、九角元胞, 分别对应相应演化图中石墨烯蓝、绿、黄、红色标记的五、七、八、九角元胞, 图58中标记解释与此相同)

    Fig. 4.  Evolution diagram of 5|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(I), (J)–(L) are the evolution diagrams of 5|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 6°, 8° and 10°; (a)–(c), (d)–(g), (h)–(i), (j)–(l) are the evolution process diagrams. The strains $\varepsilon $ of (A)–(C) are 0, 0.0297, 0.0352, (D)–(G) are 0, 0.0286, 0.0308, 0.0352, (H), (I) are 0, 0.0363, and (J)–(L) are 0, 0.0297, 0.0363. The 5, 7, 8, 9 marked in the evolution diagram represent the graphene pentagonal, heptagonal, octagonal, and nougonal cells respectively, corresponding to the pentagonal, heptagonal, octagonal, and nougonal cells marked in the corresponding evolution process diagram in blue, green, yellow, and red respectively. The explanations of labels in Figure 5-8 are the same as those in Figure 4.

    图 5  石墨烯晶界5|8|7位错在应变下的演化图 (A)—(D), (E)—(H), (I)—(K)分别对应晶界角为6°, 8°, 10°的石墨烯晶界5|8|7位错在应变下的演化图; (a)—(d), (e)—(h), (i)—(k)是对应的演化过程示意图; (A)—(D)的应变$\varepsilon $分别为0, 0.0209, 0.0352, 0.0407, (E)—(H) 的应变$\varepsilon $分别为0, 0.0209, 0.0429, 0.0473, (I)—(K) 的应变$\varepsilon $分别为0, 0.0165, 0.0319

    Fig. 5.  Evolution diagram of 5|8|7 dislocations at graphene grain boundaries under strain: (A)–(D), (E)–(H), (I)–(K) are the evolution diagrams of 5|8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 6°, 8° and 10°; (a)–(d), (e)–(h), (i)–(k) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(D) are 0, 0.0209, 0.0352, 0.0407, (E)–(H) are 0, 0.0209, 0.0429, 0.0473, (I)–(K) are 0, 0.0165, 0.0319.

    图 6  石墨烯晶界5|8|8|7位错在应变下的演化图 (A)—(C), (D)—(G), (H)—(J)分别对应晶界角为4°, 8°, 10°的石墨烯晶界5|8|8|7位错在应变下的演化图; (a)—(c), (d)—(g), (h)—(j)是对应的演化过程示意图; (A)—(C)的应变$\varepsilon $分别为0, 0.0165, 0.022, (D)—(G)的应变$\varepsilon $分别为0, 0.0253, 0.0363, 0.0473, (H)—(J)的应变$\varepsilon $分别为0, 0.0154, 0.0242

    Fig. 6.  Evolution diagram of 5|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(J) are the evolution diagrams of 5|8|8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 8° and 10°; (a)–(c), (d)–(g), (h)–(j) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(C) are 0, 0.0165, 0.022, (D)–(G) are 0, 0.0253, 0.0363, 0.0473, (H)–(J) are 0, 0.0154, 0.0242.

    图 7  石墨烯晶界5|8|8|8|7位错在应变下的3种演化图 (A)—(C), (D)—(G), (H)—(M) 是晶界角为6°的石墨烯晶界5|8|8|8|7位错在应变下的3种演化图; (a)—(c), (d)—(g), (h)—(m)是对应的演化过程示意图; (A)—(C) 的应变$\varepsilon $分别为0, 0.0132, 0.0209, (D)—(G)的应变$\varepsilon $分别为0, 0.0132, 0.0242, 0.0297, (H)—(M)的应变$\varepsilon $分别为0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462

    Fig. 7.  Three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(M) are three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain for the grain boundary angle of 6°; (a)–(c), (d)–(g), (h)–(m) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(C) are 0, 0.0132, 0.0209, (D)–(G) are 0, 0.0132, 0.0242, 0.0297, (H)–(M) are 0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462.

    图 8  石墨烯晶界5|8|8|8|8|8|7位错在应变下的演化图 (A)—(G)晶界角为4°的石墨烯晶界5|8|8|8|8|8|7位错在应变下的演化图; (a)—(g)是演化过程示意图; (A)—(G)的应变$\varepsilon $分别为0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473

    Fig. 8.  Evolution diagram of 5|8|8|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(G) are the evolution diagrams of 5|8|8|8|8|8|7 dislocations at graphene grain boundaries under strain for grain boundary angles of 4°; (a)–(g) are the evolution process diagrams; the strains $\varepsilon $ of (A)–(G) are 0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473.

    图 9  晶界角为4°, 6°, 8°, 10°的石墨烯晶界各种位错的延伸率

    Fig. 9.  Elongation of various dislocations of graphene grain boundaries with grain boundary angles of 4°, 6°, 8° and 10°

    图 10  变形过程中双晶石墨烯自由能-应变曲线 (a)—(d)晶界角分别为4°, 6°, 8°, 10°

    Fig. 10.  Free energy curves of double crystalline graphene during deformation: (a)–(d) The grain boundary angles are 4°, 6°, 8°, 10°.

    表 1  施加应力应变的参数

    Table 1.  Parameters for applying stress and strain.

    试样 拉伸应
    变方向
    晶粒取向角 晶界角
    $\theta $/(°)
    ${\theta _1}$/(°) ${\theta _2}$/(°)
    A $y$ 2 –2 4
    B $y$ 3 –3 6
    C $y$ 4 –4 8
    D $y$ 5 –5 10
    下载: 导出CSV
  • [1]

    林彰乾, 郑伟, 李浩, 王东君 2021 金属学报 57 111Google Scholar

    Lin Z Q, Zhen W, Li H, Wang D J 2021 Acta. Metall. Sin. 57 111Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Liu J, Hei L F, Song J H, Li C M, Tang W Z, Chen G C, Lu F X 2014 Diam. Relat. Mater. 46 42Google Scholar

    [5]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. 2011 Nature 469 389Google Scholar

    [6]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [7]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582Google Scholar

    [8]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z H 2014 Carbon 75 124Google Scholar

    [9]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [10]

    Shekhawat A, Ritchie R O 2016 Nat. Commun. 7 10546Google Scholar

    [11]

    Zhang J F, Zhao J J, Lu J P 2012 ACS Nano 6 2704Google Scholar

    [12]

    Heo J, Han J 2023 Nanotechnology 34 415704Google Scholar

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [14]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [15]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [16]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501Google Scholar

    [17]

    Zhao Y H, Tian X L, Zhao B J, et al. 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [18]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [19]

    Guo Q W, Hou H, Wang K L, Li M X, Liaw P K, Zhao Y H 2023 npj Comput. Mater. 9 185Google Scholar

    [20]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [21]

    Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Chen L Q, Zhao Y H 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [24]

    Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613Google Scholar

    [25]

    Zhao Y H, Xing H, Zhang L J, et al. 2023 Acta Metall. Sin. (Engl. Lett. ) 36 1749Google Scholar

    [26]

    Zhao Y H 2024 npj Comput. Mater. 2 e44Google Scholar

    [27]

    Zhao Y H 2023 npj Comput. Mater. 9 94Google Scholar

    [28]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [29]

    Song Z, Li H Q, Wang X N, Tian X L, Hou H, Zhao Y H 2023 J. Mater. Res. Technol. 27 6501Google Scholar

    [30]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [31]

    Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy V B 2013 Nano Lett. 13 5692Google Scholar

    [32]

    Li H Q, Wang X N, Zhang H B, Tian X L, Hou H, Zhao Y H 2022 Front. Mater. 9 875519Google Scholar

    [33]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [34]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng. 849 143485Google Scholar

    [35]

    Zhao Y H, Liu K X, Zhang H B, Tian X L, Jiang Q L, Murugadoss V, Hou H 2022 Adv. Compos. Hybrid Mater. 5 2546Google Scholar

    [36]

    Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, Zettl A 2011 ACS Nano 5 2142Google Scholar

    [37]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [38]

    Hirvonen P, Ervasti M M, Fan Z, et al. 2016 Phys. Rev. B 94 035414Google Scholar

    [39]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Micro Nanostruct. 129 163Google Scholar

    [40]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [6] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [7] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [10] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [14] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [15] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [16] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [17] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [18] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [19] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化. 物理学报, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [20] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
计量
  • 文章访问数:  271
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2024-10-26
  • 上网日期:  2024-11-13
  • 刊出日期:  2024-12-20

/

返回文章
返回