-
载能离子入射带负电的离子收集沉积结构过程中会发生离子溅射, 一种常用于离子加速过程的结构为圆形金属丝, 持续大量离子入射会引起金属丝的表面损失, 影响金属丝的服役性能及使用寿命. 目前, 由于常用于计算溅射产额的SRIM软件无法考虑合金晶体结构中包含的多体相互作用问题, 在高能离子入射合金靶材的溅射产额计算上具有较大误差, 因此本文基于分子动力学方法结合Langevin控温模型建立了高能金属离子入射合金靶材的离子溅射参数计算模型, 该模型具备持续入射过程中合金表面不同状态下的离子溅射参数计算功能, 利用该模型计算得到了用于离子加速的阴极金属丝的典型服役寿命, 试验值与理论值偏差<10%, 验证了理论模型的准确性和适用性, 基于此模型进行了金属丝服役寿命提升的理论优化, 并提出了使用Ni-Ti合金提升金属丝寿命的方法.When energetic heavy ions are incident on negatively charged structure that collects and deposits ions, ion sputtering will occur. Metal wire is a structure commonly used for accelerating ions, the incidence of continuous high-throughput ions can cause surface loss of metal wire, affecting the service performance and lifespan of the metal wire. The SRIM software commonly used for calculating sputtering yield cannot consider the multi-body interaction problem contained in the alloy crystal structure. So, there is a significant error in calculating the sputtering yield of high-energy ions incident on alloy target. Based on the molecular dynamics method and Langevin temperature control model, the calculation model of ion sputtering parameters of energetic metal ions incident on alloy target is established in this work. The model is used to calculate the sputtering yield under the conditions of intact surface lattice of the target material and long-term incident surface lattice damage. The damages to the cathode metal wire under different incident ion fluences are further calculated, and the cross-sectional characterization of the metal wire is carried under typical working condition. The results show that the discrepancy between the experimental value and the theoretical value is less than 10%, which verifies the accuracy and applicability of the theoretical model. Based on this model, the search direction for sputtering resistant materials is proposed, meanwhile, a theoretical optimization is carried out to improve the service life of metal wire, and a method of using Ni-Ti alloy to improve the service life of metal wires is proposed, which is of great significance for predicting the service life of the metal wire under different conditions.
-
Keywords:
- ion sputtering /
- molecular dynamics /
- alloy target /
- service life
[1] 田民波, 崔福斋 1987 物理 17 177Google Scholar
Tian M B, Cui F Z 1987 Physics 17 177Google Scholar
[2] 张莱, 张竹林 2006 安徽理工大学学报 26 69Google Scholar
Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69Google Scholar
[3] 李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar
Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar
[4] 陈畅子, 马东林, 李延涛, 冷永祥 2021 物理学报 70 180701Google Scholar
Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701Google Scholar
[5] 朱红莲, 王德武 2022 物理学报 51 1338Google Scholar
Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338Google Scholar
[6] 谢国锋 2008 物理学报 57 1784Google Scholar
Xie G F 2008 Acta Phys. Sin. 57 1784Google Scholar
[7] Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818Google Scholar
[8] Sigmund P 1969 Phys. Rev. 184 383Google Scholar
[9] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 物理学报 40 659Google Scholar
Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar
[10] Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541Google Scholar
[11] 樊康旗, 贾建援 2005 微纳电子技术 42 133Google Scholar
Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133Google Scholar
[12] Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22Google Scholar
[13] Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072Google Scholar
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828Google Scholar
[15] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695Google Scholar
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402Google Scholar
[17] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[18] Tran H, Chew H B 2023 Carbon 205 180Google Scholar
[19] 颜超, 段军红, 何兴道 2011 物理学报 60 088301Google Scholar
Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301Google Scholar
[20] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[21] Slavinskaya N A 1998 Matem. Mod. 34 3Google Scholar
[22] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156
[24] 颜超, 黄莉莉, 何兴道 2014 物理学报 63 126801Google Scholar
Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801Google Scholar
-
表 1 金属丝寿命计算入射条件
Table 1. Calculation conditions for the life of metal wires.
入射条件 初始值 入射元素 铯 入射能量/keV 9 入射方向与金属丝平面夹角/(°) 10 入射离子通量/(s–1·cm–2) 2.1×1015 靶材 625合金 金属丝初始直径/mm 0.5 -
[1] 田民波, 崔福斋 1987 物理 17 177Google Scholar
Tian M B, Cui F Z 1987 Physics 17 177Google Scholar
[2] 张莱, 张竹林 2006 安徽理工大学学报 26 69Google Scholar
Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69Google Scholar
[3] 李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar
Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar
[4] 陈畅子, 马东林, 李延涛, 冷永祥 2021 物理学报 70 180701Google Scholar
Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701Google Scholar
[5] 朱红莲, 王德武 2022 物理学报 51 1338Google Scholar
Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338Google Scholar
[6] 谢国锋 2008 物理学报 57 1784Google Scholar
Xie G F 2008 Acta Phys. Sin. 57 1784Google Scholar
[7] Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818Google Scholar
[8] Sigmund P 1969 Phys. Rev. 184 383Google Scholar
[9] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 物理学报 40 659Google Scholar
Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar
[10] Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541Google Scholar
[11] 樊康旗, 贾建援 2005 微纳电子技术 42 133Google Scholar
Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133Google Scholar
[12] Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22Google Scholar
[13] Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072Google Scholar
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828Google Scholar
[15] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695Google Scholar
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402Google Scholar
[17] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[18] Tran H, Chew H B 2023 Carbon 205 180Google Scholar
[19] 颜超, 段军红, 何兴道 2011 物理学报 60 088301Google Scholar
Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301Google Scholar
[20] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[21] Slavinskaya N A 1998 Matem. Mod. 34 3Google Scholar
[22] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156
[24] 颜超, 黄莉莉, 何兴道 2014 物理学报 63 126801Google Scholar
Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801Google Scholar
计量
- 文章访问数: 256
- PDF下载量: 9
- 被引次数: 0