搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂纹模板法的双层金属网格透明导电薄膜制备及性能

廖敦微 周建华 郑月军

引用本文:
Citation:

基于裂纹模板法的双层金属网格透明导电薄膜制备及性能

廖敦微, 周建华, 郑月军
cstr: 32037.14.aps.74.20241305

Preparation and performance of double-layer metal mesh transparent conductive films based on crack template method

LIAO Dunwei, ZHOU Jianhua, ZHENG Yuejun
cstr: 32037.14.aps.74.20241305
PDF
HTML
导出引用
  • 在裂纹模板法制备单层金属网格透明导电薄膜的基础上, 为提升其电磁屏蔽性能, 制备了双层金属网格透明导电薄膜. 通过旋涂法和提拉法工艺分别得到双层裂纹模板后, 进而制备相应的双层金属网格透明导电薄膜. 首先对同样条件下采用旋涂法制备的单层和双层金属网格透明导电薄膜样品进行性能测试和对比, 可知双层结构相对于单层的透光率下降了10.9%, 在Ku波段(12—18 GHz)测试的电磁屏蔽效能提升了30 dB. 另外, 对提拉法制备的双层金属网格样品也进行了测试, 与同样条件制备的单层金属网格样品相比, 双层结构在损失8.38%的透光率前提下, 在Ku波段的电磁屏蔽效能提升了20 dB. 测试结果表明, 制备的双层金属网格透明导电薄膜在牺牲一定透光性能前提下可明显提升电磁屏蔽性能. 通过对基于裂纹模板法的双层金属网格透明导电薄膜的制备和性能研究, 可以充分利用裂纹模板法工艺的低成本优势制备高电磁屏蔽性能的双层金属网格透明导电薄膜.
    In order to improve the electromagnetic shielding performance of the single-layer metal mesh transparent conductive films (SMMTCFs) based on the crack template method, the preparation of double-layer metal mesh transparent conductive films (DMMTCFs) by using the crack template method is studied. The double-layer cracked templates are prepared by spin-coating crack glue on both sides of the transparent substrate and by pulling the transparent substrate from the cracked adhesive solution with a certain rate to obtain the corresponding double-layer cracked templates, respectively. After obtaining the double-layer crack templates by the spin-coating method and the pulling method, respectively, the corresponding DMMTCF samples are obtained by metal deposition and degumming process. First, the performances of single-layer and double-layer metal mesh samples prepared by the spin-coating method under the same conditions are measured and compared with each other, and the optical transmittance of the double-layer structure decreases by nearly 10.9% compared with that of the single-layer structure, while the electromagnetic shielding effectiveness in the Ku band (12–18 GHz) increases by 30 dB. In addition, the double-layer metal mesh sample prepared by the pulling method is also tested. Compared with the single-layer metal mesh sample prepared under the same conditions, the double-layer structure can improve electromagnetic shielding effectiveness in the Ku band by 20 dB under the premise of losing 8.38% optical transmittance. The measurement results show that the electromagnetic shielding performance of the double-layer metal mesh transparent conductive films can be significantly improved at the expense of some optical transmittance performances. Through the preparation and performance study of DMMTCFs based on the cracked template method, the low-cost advantage of the cracked template method can be fully utilized to prepare DMMTCFs with high electromagnetic shielding performance.
      通信作者: 郑月军, zhengyuejun18@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901493)和湖南省自然科学基金(批准号: 2022JJ50239)资助的课题.
      Corresponding author: ZHENG Yuejun, zhengyuejun18@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901493) and the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ50239).
    [1]

    Qiu L, Li L, Pan Z, Sun X, Yan W 2018 MATEC Web of Conferences 189 1003Google Scholar

    [2]

    Wang W, Bai B, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [3]

    Kai C, Wang K, Liu C 2019 10th EAI International Conference, WiSATS 2019, Part II Harbin, China, January 12–13, 2019 pp656–660Google Scholar

    [4]

    Shi K, Su J, Hu K, Liang H 2020 J. Mater. Sci. Mater. Electron. 31 11646Google Scholar

    [5]

    Corredores Y, Besnier P, Castel X, Sol J, Dupeyrat C, Foutrel P 2017 IEEE Trans. Electromagn. Compat. 59 1070Google Scholar

    [6]

    Zhang Y, Dong H, Li Q, Mou N, Chen L, Zhang L 2019 RSC Adv. 9 22282Google Scholar

    [7]

    Smith H A, Rebbert M, Sternberg O 2003 Appl. Phys. Lett. 82 3605Google Scholar

    [8]

    Wang H, Lu Z, Liu Y, Tan J, Ma L, Lin S 2017 Opt. Lett. 42 1620Google Scholar

    [9]

    Gu J, Hu S, Ji H, Feng H, Zhao W, Wei J, Li M 2020 Nanotechnology 31 185303Google Scholar

    [10]

    Kaipa C S, Yakovlev A B, Medina F, Mesa F, Butler C A, Hibbins A P 2010 Opt. Express 18 13309Google Scholar

    [11]

    Lu Z, Wang H, Tan J, Lin S 2014 Appl. Phys. Lett. 105 241904Google Scholar

    [12]

    Lu Z, Liu Y, Wang H, Tan J 2016 Appl. Opt. 55 5372Google Scholar

    [13]

    廖敦微, 郑月军, 崔浩, 寸铁, 付云起 2022 光学精密工程 30 1310Google Scholar

    Liao D W, Zheng Y J, Cui H, Cun T, Fu Y Q 2022 Opt. Precis. Eng. 30 1310Google Scholar

    [14]

    Jiang Z, Zhao S, Huang W, Chen L, Liu Y H 2020 Opt. Express 28 26531Google Scholar

    [15]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [16]

    Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [17]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [18]

    肖宗湖, 王新莲, 韩春, 张帅旗, 付爽, 余玉玲 2018 新余学院学报 23 1Google Scholar

    Xiao Z H, Wang X L, Han C, Zhang S Q, Fu S, Yu Y L 2018 J. Xinyu Univ. 23 1Google Scholar

    [19]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J 2016 Sci. Rep. 6 25601Google Scholar

    [20]

    Kim Y, Tak Y, Park S, Kim H 2017 Nanomaterials 7 214Google Scholar

    [21]

    Muzzillo C P, Reese M O, Mansfield L M 2020 Langmuir 36 4630Google Scholar

    [22]

    廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起 2022 物理学报 71 154201Google Scholar

    Liao D W, Zheng Y J, Chen Q, Ding L, Gao M, Fu Y Q 2022 Acta Phy. Sin. 71 154201Google Scholar

    [23]

    Yang C, Merlo J M, Kong J, Xian Z, Han B, Zhou G, Gao J, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [24]

    Voronin A S, Fadeev Y V, Govorun I V, Simunin M, Tambasov I A, Karpova D V, Smolyarova T E, Lukyanenko A V, Karacharov A, Nemtsev I V, Khartov S V 2021 J. Mater. Sci. 56 14741Google Scholar

    [25]

    Voronin A S, Fadeev Y V, Makeev M O, Mikhalev P A, Osipkov A S, Provatorov A S, Ryzhenko D S, Yurkov G Y, Simunin Ml M, Karpova D V, Lukyanenko A V, Kokh D, Bainov D, Tambasov I A, Nedelin S V, Zolotovsky N A, Khartov S V 2022 Materials 15 1449Google Scholar

  • 图 1  双层裂纹模板的金相显微镜观测结果图 (a) 10×镜头下的正面裂纹图案; (b) 20×镜头下的正面裂纹图案; (c) 10×镜头下的背面裂纹图案; (d) 20×镜头下的背面裂纹图案

    Fig. 1.  Metallographic microscope observation pattern of the double-layer crack template: (a) Top crack pattern under 10× lens; (b) top crack pattern under 20× lens; (c) bottom crack pattern under 10× lens; (d) bottom crack pattern under 20× lens.

    图 2  双层金属沉积样品示意图

    Fig. 2.  Schematic of the double-layer metal deposition sample.

    图 3  双层金属沉积样品的金相显微镜观测结果图 (a) 10×镜头下的正面金属沉积图案; (b) 20×镜头下的正面金属沉积图案; (c) 10×镜头下的背面金属沉积图案; (d) 20×镜头下的背面金属沉积图案

    Fig. 3.  Metallographic microscope observation pattern of the double-layer metal deposition: (a) Top metal deposition pattern under 10× lens; (b) top metal deposition pattern under 20× lens; (c) bottom metal deposition pattern under 10× lens; (d) bottom metal deposition pattern under 20× lens.

    图 4  双层MMTCF样品示意图

    Fig. 4.  Diagram of the double-layer MMTCF sample.

    图 5  双层金属网格样品的金相显微镜观测结果图 (a) 10×镜头下的正面金属网格图案; (b) 20×镜头下的正面金属网格图案; (c) 10×镜头下的背面金属网格图案; (d) 20×镜头下的背面金属网格图案

    Fig. 5.  Metallographic microscope observation pattern of the double-layer metal mesh: (a) Top metal mesh pattern under 10× lens; (b) top metal mesh pattern under 20× lens; (c) bottom metal mesh pattern under 10× lens; (d) bottom metal mesh pattern under 20× lens.

    图 6  提拉法制备裂纹模板示意图

    Fig. 6.  Schematic of crack template prepared by pulling method.

    图 7  提拉法制备的双层裂纹模板的金相显微镜观测结果图 (a) 20×镜头下的正面裂纹图案; (b) 50×镜头下的正面裂纹图案; (c) 20×镜头下的背面裂纹图案; (d) 50×镜头下的背面裂纹图案

    Fig. 7.  Metallographic microscope observation pattern of double-layer crack template by pulling method: (a) Top crack pattern under 20× lens; (b) top crack pattern under 50× lens; (c) bottom crack pattern under 20× lens; (d) bottom crack pattern under 50× lens.

    图 8  提拉法制备的双层金属沉积样品示意图

    Fig. 8.  Diagram of the double-layer metal deposition by pulling method.

    图 9  提拉法制备双层金属沉积样品的金相显微镜观测结果图 (a) 20×镜头下的正面金属沉积图案; (b) 50×镜头下的正面金属沉积图案; (c) 20×镜头下的背面金属沉积图案; (d) 50×镜头下的背面金属沉积图案

    Fig. 9.  Metallographic microscope observation pattern of the double-layer metal deposition by pulling method: (a) Top metal deposition pattern under 20× lens; (b) top metal deposition pattern under 50× lens; (c) bottom metal deposition pattern under 20× lens; (d) bottom metal deposition pattern under 50× lens.

    图 10  提拉法制备的双层MMTCF样品示意图

    Fig. 10.  Diagram of the double-layer MMTCF sample by pulling method.

    图 11  提拉法制备的双层金属网格样品的金相显微镜观测结果图 (a) 20×镜头下的正面金属网格图案; (b) 50×镜头下的正面金属网格图案; (c) 20×镜头下的背面金属网格图案; (d) 50×镜头下的背面金属网格图案

    Fig. 11.  Metallographic microscope observation pattern of the double-layer metal mesh by pulling method: (a) Top metal mesh pattern under 20× lens; (b) top metal mesh pattern under 50× lens; (c) bottom metal mesh pattern under 20× lens; (d) bottom metal mesh pattern under 50× lens

    图 12  双层MMTCF样品的方阻测试结果

    Fig. 12.  Square resistance measurement results of the double-layer metal mesh sample.

    图 13  双层MMTCF样品屏蔽效能测试结果对比

    Fig. 13.  Comparison of electromagnetic shielding effectiveness results for the double-layer metal mesh sample.

    图 14  双层MMTCF样品透光率测试结果对比

    Fig. 14.  Comparison of optical transmittance results for the double-layer metal mesh sample.

    图 15  提拉法制备的双层金属网格样品方阻测试结果

    Fig. 15.  Square resistance measurement results of the double-layer metal mesh sample by pulling method

    图 16  提拉法制备的双层MMTCF样品的电磁屏蔽效能测试结果对比

    Fig. 16.  Comparison of electromagnetic shielding effectiveness results for the double-layer metal mesh sample by pulling method.

    图 17  提拉法制备的双层MMTCF样品透光率测试结果对比

    Fig. 17.  Comparison of optical transmittance results for the double-layer metal mesh sample by pulling method.

    图 18  提拉速度与裂纹尺寸分布的关系曲线

    Fig. 18.  Relationship curve between the pulling speed and the crack size distribution.

  • [1]

    Qiu L, Li L, Pan Z, Sun X, Yan W 2018 MATEC Web of Conferences 189 1003Google Scholar

    [2]

    Wang W, Bai B, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [3]

    Kai C, Wang K, Liu C 2019 10th EAI International Conference, WiSATS 2019, Part II Harbin, China, January 12–13, 2019 pp656–660Google Scholar

    [4]

    Shi K, Su J, Hu K, Liang H 2020 J. Mater. Sci. Mater. Electron. 31 11646Google Scholar

    [5]

    Corredores Y, Besnier P, Castel X, Sol J, Dupeyrat C, Foutrel P 2017 IEEE Trans. Electromagn. Compat. 59 1070Google Scholar

    [6]

    Zhang Y, Dong H, Li Q, Mou N, Chen L, Zhang L 2019 RSC Adv. 9 22282Google Scholar

    [7]

    Smith H A, Rebbert M, Sternberg O 2003 Appl. Phys. Lett. 82 3605Google Scholar

    [8]

    Wang H, Lu Z, Liu Y, Tan J, Ma L, Lin S 2017 Opt. Lett. 42 1620Google Scholar

    [9]

    Gu J, Hu S, Ji H, Feng H, Zhao W, Wei J, Li M 2020 Nanotechnology 31 185303Google Scholar

    [10]

    Kaipa C S, Yakovlev A B, Medina F, Mesa F, Butler C A, Hibbins A P 2010 Opt. Express 18 13309Google Scholar

    [11]

    Lu Z, Wang H, Tan J, Lin S 2014 Appl. Phys. Lett. 105 241904Google Scholar

    [12]

    Lu Z, Liu Y, Wang H, Tan J 2016 Appl. Opt. 55 5372Google Scholar

    [13]

    廖敦微, 郑月军, 崔浩, 寸铁, 付云起 2022 光学精密工程 30 1310Google Scholar

    Liao D W, Zheng Y J, Cui H, Cun T, Fu Y Q 2022 Opt. Precis. Eng. 30 1310Google Scholar

    [14]

    Jiang Z, Zhao S, Huang W, Chen L, Liu Y H 2020 Opt. Express 28 26531Google Scholar

    [15]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [16]

    Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [17]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [18]

    肖宗湖, 王新莲, 韩春, 张帅旗, 付爽, 余玉玲 2018 新余学院学报 23 1Google Scholar

    Xiao Z H, Wang X L, Han C, Zhang S Q, Fu S, Yu Y L 2018 J. Xinyu Univ. 23 1Google Scholar

    [19]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J 2016 Sci. Rep. 6 25601Google Scholar

    [20]

    Kim Y, Tak Y, Park S, Kim H 2017 Nanomaterials 7 214Google Scholar

    [21]

    Muzzillo C P, Reese M O, Mansfield L M 2020 Langmuir 36 4630Google Scholar

    [22]

    廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起 2022 物理学报 71 154201Google Scholar

    Liao D W, Zheng Y J, Chen Q, Ding L, Gao M, Fu Y Q 2022 Acta Phy. Sin. 71 154201Google Scholar

    [23]

    Yang C, Merlo J M, Kong J, Xian Z, Han B, Zhou G, Gao J, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [24]

    Voronin A S, Fadeev Y V, Govorun I V, Simunin M, Tambasov I A, Karpova D V, Smolyarova T E, Lukyanenko A V, Karacharov A, Nemtsev I V, Khartov S V 2021 J. Mater. Sci. 56 14741Google Scholar

    [25]

    Voronin A S, Fadeev Y V, Makeev M O, Mikhalev P A, Osipkov A S, Provatorov A S, Ryzhenko D S, Yurkov G Y, Simunin Ml M, Karpova D V, Lukyanenko A V, Kokh D, Bainov D, Tambasov I A, Nedelin S V, Zolotovsky N A, Khartov S V 2022 Materials 15 1449Google Scholar

  • [1] 党新志, 张仁刚, 张鹏, 于润升, 况鹏, 曹兴忠, 王宝义. 不同硫压退火对溅射沉积ZnS薄膜性能的影响. 物理学报, 2023, 72(3): 034207. doi: 10.7498/aps.72.20221737
    [2] 廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起. 基于裂纹模板法的金属网格透明导电薄膜制备及性能改进. 物理学报, 2022, 71(15): 154201. doi: 10.7498/aps.71.20220101
    [3] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [4] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [5] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [6] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [7] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [8] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [9] 王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏. 非平衡磁控溅射制备类石墨碳膜及性能研究. 物理学报, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [10] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [11] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [12] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [13] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] 李跃甫, 叶 辉, 傅兴海. 高择优取向铌酸锶钡薄膜的射频磁控溅射制备. 物理学报, 2008, 57(2): 1229-1235. doi: 10.7498/aps.57.1229
    [15] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [16] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [17] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [18] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [19] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  301
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-16
  • 修回日期:  2024-11-25
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回