-
本研究提出了一种基于行列扫描式信号读取方式的非制冷型PbSe红外焦平面阵列(IRFPA)探测器, 并采用表面钝化层和上下通孔结构设计以确保电性连接的可靠性与稳定性, 从而提升探测器性能. IRFPA探测器的整体尺寸为3.5 mm×3.5 mm, 像元尺寸为200 μm×100 μm, 像元间距为200 μm. 电-热仿真结果验证了探测器结构的设计合理性. 通过像元测试和成像实验, 发现该探测器在室温下表现出优异的性能, 其平均比探测率达到9.86×109 Jones, 平均响应率为1.03 A/W, 有效像元率为100%. 此外, 探测器在空气环境中静置150天后, 得益于表面钝化层的保护, 其性能仅下降3.6%. 红外成像结果表明, 该探测器在不同光功率密度下能够实现高对比度成像, 显示出对不同光强的高灵敏探测能力. 上述研究结果为开发高性能、高稳定性的PbSe IRFPA探测器提供了重要技术支撑和理论基础.Infrared focal plane array (IRFPA) detector, a key research focus in next-generation infrared detection technology, plays a crucial role in optoelectronic sensing. Here is the report on the integration and reliability of a PbSe-based IRFPA employing a row-column scanning readout architecture. This design features a surface passivation layer and through-hole structures to ensure robust electrical connectivity, thereby enhancing both stability and performance. The detector, with dimensions of 3.5 mm × 3.5 mm, a pixel size of 200 μm × 100 μm, and a pixel pitch of 200 μm, demonstrates structural integrity validated by electro-thermal simulations. At room temperature, the pixel-level and imaging assessments reveal an average detectivity value of 9.86×109 Jones and a responsivity value of 1.03 A/W, with a 100% effective pixel yield. Remarkably, the device retains high stability, exhibiting only a 3.6% performance decline after 150-day air exposure, which is attributed to the protective effect of the passivation layer. Infrared imaging under different light intensities shows pronounced contrast, confirming the sensitivity of the detector to illumination gradients. These results provide critical technical insights and a theoretical framework for advancing high-performance, stable PbSe-based IRFPA detectors.
-
Keywords:
- PbSe /
- focal plane /
- array /
- infrared imaging
[1] 袁继俊 2006 激光与红外 36 1009
Google Scholar
Yuan J J 2006 Laser Infrared 36 1009
Google Scholar
[2] Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174
Google Scholar
[3] Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001
[4] Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304
Google Scholar
[5] Rogalski A 2012 Prog. Quantum Electron. 36 342
Google Scholar
[6] Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133
Google Scholar
[7] Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]
Google Scholar
Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)
Google Scholar
[8] Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459
Google Scholar
[9] Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955
Google Scholar
[10] Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640
Google Scholar
[11] Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487
Google Scholar
[12] Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952
Google Scholar
[13] Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287
[14] Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441
[15] Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110
Google Scholar
[16] Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430
[17] Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895
Google Scholar
[18] Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564
Google Scholar
[19] Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1
Google Scholar
[20] Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578
Google Scholar
[21] Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541
Google Scholar
[22] 陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980
Google Scholar
Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980
Google Scholar
[23] Moss T S 1961 J. Phys. Chem. Solids 22 117
Google Scholar
[24] Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374
Google Scholar
[25] Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540
Google Scholar
[26] Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254
Google Scholar
[27] 袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110
Google Scholar
Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110
Google Scholar
[28] Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499
Google Scholar
[29] Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894
Google Scholar
[30] Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160
Google Scholar
[31] Reiss P, Protiere M, Li L 2009 Small 5 154
Google Scholar
[32] Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209
Google Scholar
[33] 杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53
Google Scholar
Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53
Google Scholar
[34] Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977
Google Scholar
[35] GB/T 17444–2013 红外焦平面阵列参数测试方法 2014
GB/T 17444–2013 Infraction flat array parameter test method 2014
[36] Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659
Google Scholar
[37] Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772
Google Scholar
-
图 8 PbSe IRFPA探测器0和150天性能对比 (a) 光功率密度为0.199 mW/mm2下的I-t曲线; (b) 不同光功率密度下的比探测率对比; (c) 不同光功率密度下响应率对比
Fig. 8. Comparison of 0 and 150 days performance of PbSe IRFPA detector: (a) Current varies time under 0.199 mW/mm2; (b) comparison of specific detectivity under different light intensity; (c) comparison of responsivity under different light intensity.
图 12 PbSe IRFPA探测器红外成像随光功率密度变化 (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2
Fig. 12. Infrared imaging results of PbSe IRFPA detector vary with light density: (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2.
-
[1] 袁继俊 2006 激光与红外 36 1009
Google Scholar
Yuan J J 2006 Laser Infrared 36 1009
Google Scholar
[2] Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174
Google Scholar
[3] Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001
[4] Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304
Google Scholar
[5] Rogalski A 2012 Prog. Quantum Electron. 36 342
Google Scholar
[6] Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133
Google Scholar
[7] Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]
Google Scholar
Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)
Google Scholar
[8] Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459
Google Scholar
[9] Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955
Google Scholar
[10] Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640
Google Scholar
[11] Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487
Google Scholar
[12] Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952
Google Scholar
[13] Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287
[14] Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441
[15] Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110
Google Scholar
[16] Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430
[17] Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895
Google Scholar
[18] Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564
Google Scholar
[19] Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1
Google Scholar
[20] Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578
Google Scholar
[21] Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541
Google Scholar
[22] 陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980
Google Scholar
Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980
Google Scholar
[23] Moss T S 1961 J. Phys. Chem. Solids 22 117
Google Scholar
[24] Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374
Google Scholar
[25] Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540
Google Scholar
[26] Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254
Google Scholar
[27] 袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110
Google Scholar
Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110
Google Scholar
[28] Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499
Google Scholar
[29] Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894
Google Scholar
[30] Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160
Google Scholar
[31] Reiss P, Protiere M, Li L 2009 Small 5 154
Google Scholar
[32] Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209
Google Scholar
[33] 杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53
Google Scholar
Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53
Google Scholar
[34] Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977
Google Scholar
[35] GB/T 17444–2013 红外焦平面阵列参数测试方法 2014
GB/T 17444–2013 Infraction flat array parameter test method 2014
[36] Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659
Google Scholar
[37] Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772
Google Scholar
计量
- 文章访问数: 312
- PDF下载量: 3
- 被引次数: 0