搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面钝化与上下通孔技术的高性能PbSe红外焦平面阵列探测器设计与实现

吕全江 李容凡 胡天喜 吴勇 刘军林

引用本文:
Citation:

基于表面钝化与上下通孔技术的高性能PbSe红外焦平面阵列探测器设计与实现

吕全江, 李容凡, 胡天喜, 吴勇, 刘军林
cstr: 32037.14.aps.74.20241761

Design and implementation of high-performance PbSe infrared focal plane array detectors based on surface passivation and through-hole technologies

LYU Quanjiang, LI Rongfan, HU Tianxi, WU Yong, LIU Junlin
cstr: 32037.14.aps.74.20241761
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本研究提出了一种基于行列扫描式信号读取方式的非制冷型PbSe红外焦平面阵列(IRFPA)探测器, 并采用表面钝化层和上下通孔结构设计以确保电性连接的可靠性与稳定性, 从而提升探测器性能. IRFPA探测器的整体尺寸为3.5 mm×3.5 mm, 像元尺寸为200 μm×100 μm, 像元间距为200 μm. 电-热仿真结果验证了探测器结构的设计合理性. 通过像元测试和成像实验, 发现该探测器在室温下表现出优异的性能, 其平均比探测率达到9.86×109 Jones, 平均响应率为1.03 A/W, 有效像元率为100%. 此外, 探测器在空气环境中静置150天后, 得益于表面钝化层的保护, 其性能仅下降3.6%. 红外成像结果表明, 该探测器在不同光功率密度下能够实现高对比度成像, 显示出对不同光强的高灵敏探测能力. 上述研究结果为开发高性能、高稳定性的PbSe IRFPA探测器提供了重要技术支撑和理论基础.
    Infrared focal plane array (IRFPA) detector, a key research focus in next-generation infrared detection technology, plays a crucial role in optoelectronic sensing. Here is the report on the integration and reliability of a PbSe-based IRFPA employing a row-column scanning readout architecture. This design features a surface passivation layer and through-hole structures to ensure robust electrical connectivity, thereby enhancing both stability and performance. The detector, with dimensions of 3.5 mm × 3.5 mm, a pixel size of 200 μm × 100 μm, and a pixel pitch of 200 μm, demonstrates structural integrity validated by electro-thermal simulations. At room temperature, the pixel-level and imaging assessments reveal an average detectivity value of 9.86×109 Jones and a responsivity value of 1.03 A/W, with a 100% effective pixel yield. Remarkably, the device retains high stability, exhibiting only a 3.6% performance decline after 150-day air exposure, which is attributed to the protective effect of the passivation layer. Infrared imaging under different light intensities shows pronounced contrast, confirming the sensitivity of the detector to illumination gradients. These results provide critical technical insights and a theoretical framework for advancing high-performance, stable PbSe-based IRFPA detectors.
      通信作者: 吕全江, lvquanjiang@ujs.edu.cn ; 刘军林, liujunlin@ujs.edu.cn
    • 基金项目: 江苏省双创团队项目(批准号: JSSCTD202146)资助的课题.
      Corresponding author: LYU Quanjiang, lvquanjiang@ujs.edu.cn ; LIU Junlin, liujunlin@ujs.edu.cn
    • Funds: Project supported by the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. JSSCTD202146).
    [1]

    袁继俊 2006 激光与红外 36 1009Google Scholar

    Yuan J J 2006 Laser Infrared 36 1009Google Scholar

    [2]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [3]

    Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001

    [4]

    Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304Google Scholar

    [5]

    Rogalski A 2012 Prog. Quantum Electron. 36 342Google Scholar

    [6]

    Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133Google Scholar

    [7]

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]Google Scholar

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)Google Scholar

    [8]

    Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459Google Scholar

    [9]

    Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955Google Scholar

    [10]

    Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640Google Scholar

    [11]

    Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487Google Scholar

    [12]

    Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952Google Scholar

    [13]

    Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287

    [14]

    Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441

    [15]

    Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110Google Scholar

    [16]

    Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430

    [17]

    Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895Google Scholar

    [18]

    Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564Google Scholar

    [19]

    Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1Google Scholar

    [20]

    Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578Google Scholar

    [21]

    Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541Google Scholar

    [22]

    陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980Google Scholar

    Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980Google Scholar

    [23]

    Moss T S 1961 J. Phys. Chem. Solids 22 117Google Scholar

    [24]

    Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374Google Scholar

    [25]

    Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540Google Scholar

    [26]

    Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254Google Scholar

    [27]

    袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110Google Scholar

    Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110Google Scholar

    [28]

    Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499Google Scholar

    [29]

    Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894Google Scholar

    [30]

    Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160Google Scholar

    [31]

    Reiss P, Protiere M, Li L 2009 Small 5 154Google Scholar

    [32]

    Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209Google Scholar

    [33]

    杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53Google Scholar

    Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53Google Scholar

    [34]

    Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977Google Scholar

    [35]

    GB/T 17444–2013 红外焦平面阵列参数测试方法 2014

    GB/T 17444–2013 Infraction flat array parameter test method 2014

    [36]

    Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659Google Scholar

    [37]

    Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772Google Scholar

  • 图 1  探测器最高温度随电压变化曲线, 插图为3 V工作偏压下的温度分布

    Fig. 1.  Maximum temperature of detector as a function of bias voltage, with insets representing temperature distribution under 3 V working bias voltage

    图 2  探测器最高温度随时间变化曲线, 插图为300 s时的温度分布

    Fig. 2.  Maximum temperature of detector as a function of time, with insets representing temperature distribution at 300 seconds

    图 3  PbSe IRFPA探测器制备流程图

    Fig. 3.  Preparation process of PbSe IRFPA detector.

    图 4  (a) PbSe IRFPA探测器整体图像; (b) 金相显微镜下局部放大图

    Fig. 4.  (a) Physical image of PbSe IRFPA detector; (b) local magnified view under metallographic microscope.

    图 5  不同偏置电压下的电流变化 (a) 光电流和暗电流; (b) 光生电流; (c) 比探测率和响应率

    Fig. 5.  Current varies with different bias voltages: (a) Light current and dark current; (b) photogenerated current; (c) specific detectivity and responsivity.

    图 6  光电性能随光功率密度变化 (a) 光生电流; (b) 量子效率; (c) 比探测率和响应率

    Fig. 6.  Photoelectric response varies with light intensity: (a) Photogenerated current; (b) quantum efficiency; (c) specific detectivity and responsivity.

    图 7  不同入射角下的探测性能 (a) 比探测率分布; (b) 响应率分布

    Fig. 7.  Photoelectric response at different incident angles: (a) Specific detectivity distribution; (b) responsivity distribution.

    图 8  PbSe IRFPA探测器0和150天性能对比 (a) 光功率密度为0.199 mW/mm2下的I-t曲线; (b) 不同光功率密度下的比探测率对比; (c) 不同光功率密度下响应率对比

    Fig. 8.  Comparison of 0 and 150 days performance of PbSe IRFPA detector: (a) Current varies time under 0.199 mW/mm2; (b) comparison of specific detectivity under different light intensity; (c) comparison of responsivity under different light intensity.

    图 9  PbSe IRFPA探测器像元暗电阻分布(a) 和光电阻分布(b)

    Fig. 9.  Dark resistance (a) and light resistance (b) distribution of PbSe IRFPA detector.

    图 10  PbSe IRFPA探测器的成像性能 (a) 比探测率分布; (b) 响应率分布

    Fig. 10.  Imaging performance of PbSe IRFPA detector: (a) Specific detectivity distribution; (b) responsivity distribution.

    图 11  PbSe IRFPA探测器成像装置示意图

    Fig. 11.  Schematic diagram of PbSe IRFPA detector imaging device.

    图 12  PbSe IRFPA探测器红外成像随光功率密度变化 (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2

    Fig. 12.  Infrared imaging results of PbSe IRFPA detector vary with light density: (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2.

  • [1]

    袁继俊 2006 激光与红外 36 1009Google Scholar

    Yuan J J 2006 Laser Infrared 36 1009Google Scholar

    [2]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [3]

    Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001

    [4]

    Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304Google Scholar

    [5]

    Rogalski A 2012 Prog. Quantum Electron. 36 342Google Scholar

    [6]

    Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133Google Scholar

    [7]

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]Google Scholar

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)Google Scholar

    [8]

    Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459Google Scholar

    [9]

    Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955Google Scholar

    [10]

    Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640Google Scholar

    [11]

    Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487Google Scholar

    [12]

    Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952Google Scholar

    [13]

    Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287

    [14]

    Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441

    [15]

    Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110Google Scholar

    [16]

    Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430

    [17]

    Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895Google Scholar

    [18]

    Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564Google Scholar

    [19]

    Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1Google Scholar

    [20]

    Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578Google Scholar

    [21]

    Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541Google Scholar

    [22]

    陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980Google Scholar

    Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980Google Scholar

    [23]

    Moss T S 1961 J. Phys. Chem. Solids 22 117Google Scholar

    [24]

    Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374Google Scholar

    [25]

    Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540Google Scholar

    [26]

    Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254Google Scholar

    [27]

    袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110Google Scholar

    Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110Google Scholar

    [28]

    Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499Google Scholar

    [29]

    Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894Google Scholar

    [30]

    Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160Google Scholar

    [31]

    Reiss P, Protiere M, Li L 2009 Small 5 154Google Scholar

    [32]

    Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209Google Scholar

    [33]

    杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53Google Scholar

    Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53Google Scholar

    [34]

    Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977Google Scholar

    [35]

    GB/T 17444–2013 红外焦平面阵列参数测试方法 2014

    GB/T 17444–2013 Infraction flat array parameter test method 2014

    [36]

    Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659Google Scholar

    [37]

    Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772Google Scholar

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [3] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [6] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [7] 张晓玲, 司乐飞, 孟庆端, 吕衍秋, 司俊杰. 考虑底充胶固化过程的InSb面阵探测器结构分析模型. 物理学报, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [8] 周晓凤, 戚祖敏, 罗向前, 刘长安, 朱建辉, 王泽华, 张轶, 訾彦勇. 利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法. 物理学报, 2017, 66(8): 084201. doi: 10.7498/aps.66.084201
    [9] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [11] 李家琨, 王霞, 金伟其, 张旭. 最小可分辨气体浓度的等效测试评价方法. 物理学报, 2015, 64(16): 160701. doi: 10.7498/aps.64.160701
    [12] 张晓玲, 孟庆端, 张立文, 耿东峰, 吕衍秋. 液氮冲击中锑化铟焦平面探测器形变研究. 物理学报, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [13] 孟庆端, 余倩, 张立文, 吕衍秋. InSb面阵探测器法线方向力学参数选取研究. 物理学报, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [14] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [15] 蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平. 基于无基底焦平面阵列红外热像仪的理论模型分析. 物理学报, 2011, 60(5): 054401. doi: 10.7498/aps.60.054401
    [16] 蔡春锋, 吴惠桢, 斯剑霄, 孙艳, 戴宁. MBE生长PbSe/PbSrSe量子阱结构的光致中红外发光的研究. 物理学报, 2009, 58(5): 3560-3564. doi: 10.7498/aps.58.3560
    [17] 程腾, 张青川, 陈大鹏, 伍小平, 史海涛, 高杰. 无基底焦平面阵列的红外成像性能分析. 物理学报, 2009, 58(2): 852-859. doi: 10.7498/aps.58.852
    [18] 肖发俊, 张 鹏, 刘 圣, 赵建林. 光诱导平面波导阵列中离散空间光孤子的相干相互作用. 物理学报, 2008, 57(4): 2529-2536. doi: 10.7498/aps.57.2529
    [19] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析. 物理学报, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [20] 缪正宇, 张青川, 陈大鹏, 伍小平, 李超波, 郭哲颖, 董凤良, 熊志铭. 双材料微梁阵列室温物体红外成像. 物理学报, 2006, 55(7): 3208-3214. doi: 10.7498/aps.55.3208
计量
  • 文章访问数:  311
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-24
  • 修回日期:  2025-02-27
  • 上网日期:  2025-03-21

/

返回文章
返回