搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DyFeO3中高于Morin温度的新型磁相变

苏浩斌 郑世芸 王宁 朱国锋 居学尉 黄峰 曹义明 王向峰

引用本文:
Citation:

DyFeO3中高于Morin温度的新型磁相变

苏浩斌, 郑世芸, 王宁, 朱国锋, 居学尉, 黄峰, 曹义明, 王向峰

A new magnetic phase transition above Morin temperature in DyFeO3

SU Haobin, ZHENG Shiyun, WANG Ning, ZHU Guofeng, JU Xuewei, HUANG Feng, CAO Yiming, WANG Xiangfeng
PDF
HTML
导出引用
  • 稀土正铁氧体(RFeO3, R为稀土原子)包含Fe3+R3+两套磁性离子亚晶格, 存在Fe3+-Fe3+, Fe3+-R3+, R3+-R3+三种相互作用, 它们是稀土正铁氧体丰富磁性的来源. 本文利用时域太赫兹磁光谱, 在1.6—300 K的温度范围内, 在不同磁场下, 测量a-cut DyFeO3单晶样品的吸收光谱, 并分析光谱中铁磁(FM)和反铁磁共振(AFMR)吸收峰的温度和磁场依赖特性. 在零磁场变温实验中, 我们发现随温度降低在Morin温度(~ 50 K)出现的温度诱导的自旋重取向(Γ4Γ1), 以及在4 K温度以下存在一个由于电磁振子导致的宽带吸收. 在Morin温度以上, 我们在恒定温度(70, 77, 90, 100 K)下测量了样品在0—7 T磁场范围的吸收光谱. 实验结果表明, 随着磁场的增大, 存在一个新的磁相变过程(Γ4Γ24Γ2Γ24Γ2), 相变的临界磁场随温度而变化. 这一相变过程是由于外磁场和Fe3+-Dy3+的各向异性交换相互作用导致的内部有效场的相互竞争和对磁矩的协同作用. 本项研究为深入理解稀土铁氧化物的丰富相变和磁电耦合特性, 以及开发相关的自旋电子学器件提供参考.
    Rare-earth orthoferrites (RFeO3) have received significant attention due to their intricate magnetic interactions and potential applications in ultrafast spintronic devices. Among them, DyFeO3 exhibits rich magnetic phase transitions driven by the interplay between Fe3+ and Dy3+ sublattices. Previous studies mainly focused on temperature-induced spin reorientation near the Morin temperature (TM~50 K), but there has been limited exploration of magnetic phase behavior under external fields above TM. This work aims to systematically investigate the temperature- and magnetic-field-dependent magneto-dynamic properties of a-cut DyFeO3 single crystals, with an emphasis on identifying novel phase transitions and elucidating the underlying mechanisms involving Fe3+-Dy3+ anisotropic exchange interactions. High-quality a-cut DyFeO3 single crystals are grown using the optical floating zone method and characterized by X-ray diffraction (XRD) and Laue diffraction. Time-domain terahertz spectroscopy (THz-TDS) coupled with a superconducting magnet (0–7 T, 1.6–300 K) is employed to probe the ferromagnetic resonance (FM) and antiferromagnetic resonance (AFMR) modes. By analyzing the frequency trends in the spectra, the response of internal magnetic moments to external stimuli can be inferred. In the zero magnetic field experiment, it is found that the temperature induced spin reorientation (Γ4Γ1) occurs at Morin temperature(~50 K) with temperature decreasing. A broadband electromagnetic absorption (0.45–0.9 THz) occurs below 4 K, which is attributed to electromagnons activated by broken inversion symmetry in the Dy3+ antiferromagnetic state. Above the Morin temperature, the absorption spectra of the sample are measured at constant temperatures (70, 77, 90, 100 K) and magnetic fields ranging from 0 to 7 T. The experimental results show that with the increase of magnetic field, a new magnetic phase transition occurs (Γ 4 Γ 24 Γ 2 Γ 24 Γ 2 ), and the critical magnetic field of the phase transition varies with temperature. The phase transitions arise from the competition between external magnetic fields and internal effective fields generated by anisotropic Fe3+-Dy3+ exchange. These findings contribute to the further understanding of the magnetoelectric effects in RFeO3 systems and provide a roadmap for using field-tunable phase transitions to design spin-based devices .
  • 图 1  (a) RFeO3体系中3个允许相(Γ1, Γ2, Γ4)的晶胞中Fe3+的4个自旋磁矩; (b) 简化后的示意图

    Fig. 1.  (a) The four spin magnetic moments of Fe3+ in the cell of three allowable phases (Γ1, Γ2, Γ4) in the RFeO3 system; (b) simplified schematic diagram.

    图 2  零磁场下, a-cut DyFeO3样品在不同温度(1.6—300 K)的太赫兹吸收光谱 (a)HTHz平行于晶体的c轴; (b)HTHz平行于晶体的和b轴, 为清晰起见, 不同温度的光谱垂直偏移

    Fig. 2.  Terahertz absorption spectra of a-cut DyFeO3 samples at different temperatures (1.6–300 K) in zero magnetic field: (a) HTHz parallel to the c-axis of the crystal; (b) HTHz parallel to the b-axis of the crystal, spectra at different temperatures are shifted vertically for clarity.

    图 3  HTHz平行晶体c轴和外加磁场沿晶体a轴方向的实验构型下, a-cut DyFeO3样品在0—7 T磁场下的太赫兹吸收光谱, 温度分别为 (a) 100 K, (b) 90 K, (c) 77 K, (d) 70 K, 清晰起见, 不同磁场的光谱垂直偏移

    Fig. 3.  Terahertz absorption spectra of the a-cut DyFeO3 sample under a magnetic field from 0–7 T at various temperatures of (a) 100 K, (b) 90 K, (c) 77 K, and (d) 70 K, when the directions of HTHz and the applied magnetic field are along the crystal c axis and a axis, respectively. Spectra are vertically offset for clarity.

    图 4  温度100 K时, 0—7 T磁场范围内, a-cut DyFeO3单晶中Γ4Γ24Γ2Γ24Γ2的相变过程

    Fig. 4.  The phase transition process Γ4Γ24Γ2Γ24Γ2 in the a-cut DyFeO3 single-crystal in a magnetic field range of 0—7 T at 100 K.

    表 1  DyFeO3的q-FM和q-AFM的选择激发规则[11,23]    

    Table 1.  Selective excitation rules for q-FM and q-AFM modes in DyFeO3[11,23].

    Fe phaseQuasi-FM modeQuasi-AFM mode
    Γ1(Ax, Gy, Cz)HTHz//aHTHz//c
    Γ2(Fx, Cy, Gz)HTHz//b, HTHz//cHTHz//a
    Γ4(Gx, Ay, Fz)HTHz//a , HTHz//bHTHz//c
    下载: 导出CSV
  • [1]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [2]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009 Nat. Phys. 5 727Google Scholar

    [3]

    Yuan S J, Ren W, Hong F, Wang Y B, Zhang J C, Bellaiche L, Cao S X, Cao G 2013 Phys. Rev. B 87 184405Google Scholar

    [4]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [5]

    Bamba M, Li X W, Peraca N M, Kono J 2022 Commun. Phys. 5 3Google Scholar

    [6]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [7]

    Yamaguchi T 1974 J. Phys. Chem. Solids 35 479Google Scholar

    [8]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [9]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [10]

    Balbashov A M, Volkov A A, Lebedev S P, Mukhin A A, Prokhorov A S 1985 Sov. Phys. JETP 61 573

    [11]

    Stanislavchuk T N, Wang Y Z, Janssen Y, Carr G L, Cheong S W, Sirenko A A 2016 Phys. Rev. B 93 094403Google Scholar

    [12]

    Prelorendjo L A, Johnson C E, Thomas M F, Wanklyn B M 1980 J. Phys. C: Solid State Phys. 13 2567Google Scholar

    [13]

    Koshizuka N, Hayashi K 1988 J. Phys. Soc. Jpn. 57 4418Google Scholar

    [14]

    Eremenko V V, Gnatchenko S L, Kharchenko N F, Lebedev P P, Piotrowski K, Szymczak H, Szymczak R 1987 Europhys. Lett. 4 1327Google Scholar

    [15]

    Gnatchenko S L, Kharchenko N F, Lebedev P P, Piotrowski K, Szymczak H, Szymczak R 1989 J. Magn. Magn. Mater. 81 125Google Scholar

    [16]

    Balbashov A M, Marchukov P Y, Nikolaev I V, Rudashevskiĭ E G 1988 Sov. Phys. JETP 67 1910

    [17]

    Peraca N M, Li X W, Moya J M, Hayashida K, Kim D, Ma X X, Neubauer K J, Padilla D F, Huang C L, Dai P C, Nevidomskyy A H, Pu H, Morosan E, Cao S X, Bamba M, Kono J 2024 Commun. Mater. 5 42Google Scholar

    [18]

    Lin X, Jiang J J, Jin Z M, Wang D, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [19]

    Makihara T, Hayashida K, Noe II G T, Li X W, Peraca N M, Ma X X, Jin Z M, Ren W, Ma G H, Katayama I, Takeda J, Nojiri H, Turchinovich D, Cao S X, Bamba M, Kono J 2021 Nat. Commun. 12 3115

    [20]

    Cao Y M, Xiang M L, Zhao W Y, Wang G H, Feng Z J, Kang B J, Stroppa A, Zhang J C, Ren W, Cao S X 2016 J. Appl. Phys. 119 063904

    [21]

    Ju X W, Zhu G F, Huang F, Dai Z R, Chen Y Q, Guo C X, Deng L, Wang X F 2022 Opt. Express 30 957Google Scholar

    [22]

    Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021 Opt. Express 29 9261Google Scholar

    [23]

    Fu Z C, Chen J Y, Shang J M, Lin X, Suo P, Sun K W, Wang C, Li Q X, Luo J L, Wang X B, Wu A H, Ma G H 2024 Appl. Phys. Lett. 125 241102Google Scholar

    [24]

    Cao S X, Chen L, Zhao W Y, Xu K, Wang G H, Yang Y L, Kang B J, Zhao H J, Chen P, Stroppa A, Zheng R K, Zhang J C, Ren W, Íñiguez J, Bellaiche L 2016 Sci. Rep. 6 37529Google Scholar

    [25]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597Google Scholar

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, doi: 10.7498/aps.73.20232010
    [2] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征. 物理学报, doi: 10.7498/aps.73.20231766
    [3] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, doi: 10.7498/aps.73.20231322
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, doi: 10.7498/aps.72.20222336
    [5] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, doi: 10.7498/aps.71.20220722
    [6] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, doi: 10.7498/aps.70.20210084
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, doi: 10.7498/aps.70.20201495
    [8] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, doi: 10.7498/aps.69.20201507
    [9] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, doi: 10.7498/aps.69.20201518
    [10] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响. 物理学报, doi: 10.7498/aps.68.20190030
    [11] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, doi: 10.7498/aps.67.20181750
    [12] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, doi: 10.7498/aps.67.20172250
    [13] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, doi: 10.7498/aps.67.20181084
    [14] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析. 物理学报, doi: 10.7498/aps.65.048401
    [15] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关. 物理学报, doi: 10.7498/aps.60.074218
    [16] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, doi: 10.7498/aps.60.084219
    [17] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响. 物理学报, doi: 10.7498/aps.60.019503
    [18] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究. 物理学报, doi: 10.7498/aps.55.5506
    [19] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, doi: 10.7498/aps.50.313
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常. 物理学报, doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  239
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 修回日期:  2025-01-25
  • 上网日期:  2025-02-21

/

返回文章
返回