搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工规范场调控下的单光子散射

汪润婷 王旭东 梅锋 肖连团 贾锁堂

引用本文:
Citation:

人工规范场调控下的单光子散射

汪润婷, 王旭东, 梅锋, 肖连团, 贾锁堂

Single-photon scattering under control of artificial gauge field

WANG Runting, WANG Xudong, MEI Feng, XIAO Liantuan, JIA Suotang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究了人工规范场调控下超导量子比特-SSH(Su-Schrieffer-Heeger)拓扑光子晶格耦合体系中的单光子散射. 通过解析计算单光子散射系数, 揭示了人工规范场对SSH拓扑晶格上下能带中的单光子散射具有完全不同的调控作用, 包括上能带全透射和下能带全反射. 其次, 本文进一步证明人工规范场调控下单光子散射相对于晶格动量和上下能带具有高度的对称性. 反过来, 发现人工规范场调控下单光子反射系数可以不依赖晶格耦合强度, 只依赖晶格的拓扑特性, 可用于探测光子晶格的拓扑不变量. 最后, 本文将人工规范场调控下的单光子散射推广至超导量子比特-拓扑光子晶格不同耦合构型中. 这些结果为拓扑光子晶格中光子输运的调控提供了新的视角和方法.
    The mechanism of controlling single-photon scattering in a hybrid system consisting of superconducting qubits coupled to aSu-Schrieffer-Heeger (SSH) topological photonic lattice is investigated under the influence of an artificial gauge field. This research is driven by the growing interest in the intersection between quantum optics and condensed matter physics, particularly in the field of topological quantum optics, where the robustness of photon transport against defects and impurities can be used for quantum information processing. To achieve this, a theoretical model, which incorporates the phase of the artificial gauge field into the coupling between superconducting qubits and the SSH photonic lattice, is developed in this work. The analytical expressions for the reflection and transmission amplitudes of single photons are derived by using the probability-amplitude method. The results show that the artificial gauge field can effectively control single photon scattering in both the upper energy band and the lower energy band of the SSH lattice, thereby enabling total transmission in the upper band and total reflection in the lower band. This band-dependent scattering behavior exhibits a high degree of symmetry with respect to the lattice momentum and energy bands. Importantly, the reflection coefficient can be made independent of the lattice coupling strength and dependent solely on the topological properties of the lattice. This finding suggests a robust method of detecting topological invariants in photonic lattices. Furthermore, our analysis is extended to various coupling configurations between superconducting qubits and the photonic lattice, highlighting the versatility of the artificial gauge field in manipulating photon transport. These findings not only provide new insights into the control of photon transport in topological photonic lattices, but also open the door to the development of novel quantum optical devices and robust quantum information processing platforms.
  • 图 1  超导比特耦合到SSH拓扑光子晶格体系中的单光子相干输运示意图 (a)超导比特同时耦合到元胞内的两个格点; (b)超导比特同时耦合到元胞间的两个格点, $\theta $为外加人工规范场相位

    Fig. 1.  Schematic illustration of single-photon coherent transport in a system of superconducting qubits coupled to an SSH topological photonic lattice system: (a) Superconducting qubit simultaneously coupled to two lattice sites within the same unit cell; (b) superconducting qubit simultaneously coupled to two lattice sites across different unit cells, $\theta $ is the phase of the applied artificial gauge field.

    图 2  SSH 拓扑光子晶格的能带结构与拓扑特性 (a)能量$E$关于波矢$k$的示意图, 其他参数设定为$\delta = 0.2$, $J = 1$; (b) SSH光子晶格拓扑缠绕示意图, 其中$\delta = 0.2$和$\delta = - 0.2$

    Fig. 2.  Energy band structure and topological properties of the SSH topological photonic lattice: (a) Schematic diagram of energy $E$ as a function of $k$. Other parameters are set to $\delta = 0.2$, $J = 1$; (b) schematic diagram of the SSH photonic lattice topological winding, for $\delta = 0.2$ and $\delta = - 0.2$.

    图 3  不同人工规范场相位$\theta $下, 反射系数$R$随$k$和$\delta $的变化(AB构型) (a)—(e)单光子能量为$ {E_ + } $时, 反射系数${R_ + }$随$\theta $的变化; (f)—(j)单光子能量为$ {E_ - } $时, 反射系数$ {R_ - } $随$\theta $的变化, 其他参数设置为$\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$; 人工规范场相位$\theta $的具体取值 (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$

    Fig. 3.  Variation of the reflection coefficient $R$ with $k$ and $\delta $ for different artificial gauge field phases $\theta $(AB configuration): (a)–(e) ${R_ + }$ as a function of $\theta $ for a single-photon energy $ {E_ + } $; (f)–(j) $ {R_ - } $ as a function of $\theta $ for a single-photon energy $ {E_ - } $. Other parameters are set to $\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$.

    图 4  反射系数$R$随$\delta $的变化 (a)—(c)单光子能量为$ {E_ + } $时, 反射系数$R$随$\delta $的变化; (d)—(f)单光子能量为$ {E_ - } $时, 反射系数$R$随$\delta $的变化; 其他参数设置为$\varDelta = 0$, $k = \pi $, ${J{\mathrm{a}}} = {J{\mathrm{b}}} = J = 1$. 人工规范场相位$\theta $具体取值为 (a), (d) $\theta = 0$; (b), (e) $\theta = \pi $; (c), (f) $\theta = \pi /2$

    Fig. 4.  Variation of reflection coefficient $R$ with $\delta $: (a)–(c) $R$ as a function of $\delta $ for a single photon energy $ {E_ + } $; (d)–(f) $R$ as a function of $\delta $ for a single photon energy $ {E_ - } $; Other parameters are set to $\varDelta = 0$, $k = \pi $, ${J{\mathrm{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (d) $\theta = 0$; (b), (e) $\theta = \pi $; (c), (f) $\theta = \pi /2$.

    图 5  不同人工规范场相位$\theta $下, 反射系数$R$随$k$和$\delta $的变化(BA构型) (a)—(e)单光子能量为$ {E_ + } $时, 反射系数${R_ + }$随$\theta $的变化; (f)—(j)单光子能量为$ {E_ - } $时, 反射系数$ {R_ - } $随$\theta $的变化, 其他参数设置为$\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$; 人工规范场相位$\theta $的具体取值为 (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$

    Fig. 5.  Variation of the reflection coefficient $R$ with $k$ and $\delta $ for different artificial gauge field phases $\theta $(AB configuration): (a)–(e) ${R_ + }$ as a function of $\theta $ for a single-photon energy $ {E_ + } $; (f)–(j) $ {R_ - } $ as a function of $\theta $ for a single-photon energy $ {E_ - } $. Other parameters are set to $\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$.

  • [1]

    Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V, Poddubny A N 2023 Rev. Mod. Phys. 95 015002Google Scholar

    [2]

    Mehrabad M J, Mittal S, Hafezi M 2023 Phys. Rev. A 108 040101Google Scholar

    [3]

    Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021 Adv. Opt. Mater. 9 2001739Google Scholar

    [4]

    Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A, Segev M 2019 Nat. Photonics 13 339Google Scholar

    [5]

    Zhou L, Gong Z R, Liu Y, Sun C P, Franco N 2008 Phys. Rev. Lett. 101 100501Google Scholar

    [6]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [7]

    Kannan B, Almanakly A, Sung Y, Paolo A D, Rower D A, Braumülleret J, Melville A, Niedzielski B M, Karamlou A, Serniak K, Vepsäläinen A, Schwartz M E, Yoder J L, Winik R, Wang J I J, Orlando T P, Gustavsson S, Grover J A, Oliver W D 2023 Nat. Phys. 19 394Google Scholar

    [8]

    Xu H S, Jin L 2022 Phys. Rev. Res. 4 L032015Google Scholar

    [9]

    Xu H S, Jin L 2023 Phys. Rev. Res. 5 L042005Google Scholar

    [10]

    Zhou L, Dong H, Liu Y, Sun C P, Nori F 2008 Phys. Rev. A 78 063827Google Scholar

    [11]

    Liao J Q, Huang J F, Liu Y, Kuang L M, Sun C P 2009 Phys. Rev. A 80 014301Google Scholar

    [12]

    Liao J Q, Gong Z R, Zhou L, Liu Y, Sun C P, Nori F 2010 Phys. Rev. A 81 042304Google Scholar

    [13]

    Zhou L, Kuang L M 2010 Phys. Rev. A 82 042113Google Scholar

    [14]

    Liao J Q, Cheung H K, Law C K 2012 Phys. Rev. A 85 025803Google Scholar

    [15]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806Google Scholar

    [16]

    Liao J Q, Law C K 2013 Phys. Rev. A 87 043809Google Scholar

    [17]

    Wang Z H, Zhou L, Li Y, Sun C P 2014 Phys. Rev. A 89 053813Google Scholar

    [18]

    Xu X W, Chen A X, Li Y, Liu Y 2017 Phys. Rev. A 95 063808Google Scholar

    [19]

    Jin L 2018 Phys. Rev. A 98 022117Google Scholar

    [20]

    Wang Z, Du L, Li Y, Liu Y 2019 Phys. Rev. A 100 053809Google Scholar

    [21]

    Jin L, Song Z 2021 Chinese Phys. Lett. 38 024202Google Scholar

    [22]

    Nie W, Shi T, Nori F, Liu Y 2021 Phys. Rev. Appl. 15 044041Google Scholar

    [23]

    Yin X L, Liu Y H, Huang J F, Liao J Q 2022 Phys. Rev. A 106 013715Google Scholar

    [24]

    Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [25]

    Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703Google Scholar

    [26]

    Xu H S, Jin L 2023 Phys. Rev. Res. 5 L042005Google Scholar

    [27]

    Xu H S, Jin L 2024 Phys. Rev. Res. 6 L022006Google Scholar

    [28]

    Bello M, Platero G, Cirac J I, González-Tudela A 2019 Sci. Adv. 5 eaaw0297Google Scholar

    [29]

    Kim E, Zhang X, Ferreira V S, Banker J, K. Iverson J, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M, Painter O 2021 Phys. Rev. X 11 011015

    [30]

    Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039

    [31]

    Cheng W, Wang Z, Liu Y 2022 Phys. Rev. A 106 033522Google Scholar

  • [1] 郝佳鑫, 徐志浩. 复相互作用调制的两粒子系统中的局域化转变. 物理学报, doi: 10.7498/aps.74.20241691
    [2] 崔娜玮, 高嘉忻, 董慧薷, 李传奇, 罗小兵, 肖进鹏. 磁性原子链中的拓扑超导相竞争. 物理学报, doi: 10.7498/aps.73.20241095
    [3] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, doi: 10.7498/aps.73.20231850
    [4] 杨昆. 分数量子霍尔液体中的几何自由度及类引力子元激发. 物理学报, doi: 10.7498/aps.73.20240994
    [5] 关欣, 陈刚. 双链超导量子电路中的拓扑非平庸节点. 物理学报, doi: 10.7498/aps.72.20230152
    [6] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [7] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, doi: 10.7498/aps.71.20220353
    [8] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [9] 李牮. 基于Yu-Shiba-Rusinov态的拓扑超导理论. 物理学报, doi: 10.7498/aps.69.20200831
    [10] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, doi: 10.7498/aps.69.20190959
    [11] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, doi: 10.7498/aps.69.20191627
    [12] 严忠波. 高阶拓扑绝缘体和高阶拓扑超导体简介. 物理学报, doi: 10.7498/aps.68.20191101
    [13] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, doi: 10.7498/aps.68.20191437
    [14] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [15] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, doi: 10.7498/aps.68.20191317
    [16] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, doi: 10.7498/aps.67.20181857
    [17] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, doi: 10.7498/aps.67.20180235
    [18] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, doi: 10.7498/aps.66.224203
    [19] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, doi: 10.7498/aps.66.227804
    [20] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, doi: 10.7498/aps.66.227802
计量
  • 文章访问数:  296
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-11
  • 上网日期:  2025-02-21

/

返回文章
返回