搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次溅射的4H-SiC/Ti/TaSi2/Pt耐高温引线电极制备

路晶 李志强 雷程 贾平岗 刘士琳 余建刚 李永伟 梁庭

引用本文:
Citation:

基于二次溅射的4H-SiC/Ti/TaSi2/Pt耐高温引线电极制备

路晶, 李志强, 雷程, 贾平岗, 刘士琳, 余建刚, 李永伟, 梁庭

Preparation of 4H-SiC/Ti/TaSi2/Pt high-temperature lead electrodes based on secondary sputtering

LU Jing, LI Zhiqiang, LEI Cheng, JIA Pinggang, LIU Shilin, YU Jiangang, LI Yongwei, LIANG Ting
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高温高压下硅基设备因自热效应漏电及形变, 无法长期稳定工作. 碳化硅作为第三代半导体在高温高频场景优势显著, 但其4H-SiC器件极限高温性能瓶颈源于欧姆电极与金属互连稳定性, 当前引线电极存在输出不稳定问题, 高温下氧气侵入易致输出失效. 研究在SiC/Ti/TaSi2/Pt欧姆接触基础上, 提出分批次溅射退火工艺制备耐高温引线电极, 通过改变退火与溅射顺序, 先在SiC衬底溅射Ti/TaSi2并退火形成欧姆接触, 再沉积Pt保护层, 构建新型SiC/Ti/TaSi2/Pt电极结构. 分批次溅射后退火形成的电极结构更致密, 600 ℃高温老化实验表明, Ti/TaSi2形成欧姆接触后溅射Pt的电极电学性能更稳定, 即初始比接触电阻率为6.35×10–5 Ω⋅cm2, 20 h空气老化后仍保持欧姆特性; Pt可有效抑制原子扩散和氧化反应使其电极微观形貌平整无卷曲. 分批次溅射退火工艺能显著提升SiC欧姆接触综合性能, 对其他金属组合欧姆接触的结构优化、稳定性提升及应用拓展具有重要指导意义, 为开发热稳定性强、适应复杂环境的欧姆接触提供思路.
    Under high temperature and pressure conditions, silicon-based devices experience leakage and deformation due to the self-heating effect, making them unable to operate stably for a long time. Silicon carbide (SiC), as a representative third-generation semiconductor material, is an ideal option for high-temperature, high-frequency, and high-power electronic devices. However, the high-temperature performance limitations of 4H-SiC devices stem from the stability of ohmic contact electrodes and metal interconnections. The output of the lead electrodes is unstable at present, and oxygen intrusion at high temperatures can easily cause output failures. Previous studies indicate that the SiC/Ti/TaSi2/Pt multilayer structure holds significant potential for ohmic contacts. Building upon this ohmic contact foundation, this study proposes a batch sputtering-annealing process to prepare high-temperature-resistant lead electrodes. This involves altering the sequence of annealing and sputtering: first sputtering Ti/TaSi2 onto the SiC substrate and annealing to form the ohmic contact, followed by depositing a Pt protective layer to construct a novel SiC/Ti/TaSi2/Pt electrode structure. Comparative analysis of the two experimental groups is conducted using SEM, AES, XRD, thin-film stress measurement, and semiconductor analyzers. The batch-sputtered and annealed electrode structure can enhance density and reduce residual stress, with an initial specific contact resistivity of 6.35 × 10–5 Ω·cm2. High-temperature aging tests at 600 °C demonstrates superior electrical stability for electrodes formed by sputtering Pt onto Ti/TaSi2 after ohmic contact formation. These electrodes maintain ohmic characteristics even after 20-hour air aging, whereas traditional co-sputtered ohmic contacts transition to Schottky contacts. Pt effectively suppresses atomic diffusion and oxidation reactions, resulting in a smooth electrode microstructure without curling. The batch sputtering-annealing process not only greatly enhances the overall performance of SiC ohmic contacts but also provides crucial guidance for realizing the structural design and performance improvement of ohmic contacts by using other metal combinations. This approach holds significant reference value for the high-temperature packaging of third-generation semiconductor power devices and the development of electronic systems operating in harsh environments.
  • 图 1  (a) 4H-SiC NPN型TLM测试方法; (b)TLM等效电极模型; (c)N型4H-SiC的TLM样品; (d) RT - Ln

    Fig. 1.  (a) 4H-SiC NPN type TLM test method; (b) equivalent electrical model of the RTLM method; (c) the fabricated N type 4H-SiC TLM samples; (d) RT - Ln graph.

    图 2  金属/SiC欧姆接触TLM样品制备流程

    Fig. 2.  Fabricating processes of metal/SiC ohmic contact TLM samples.

    图 3  (a), (b) SiC/Ti/TaSi2/Pt高温退火后表面形貌; (c) SiC/Ti/TaSi2/Pt退火后电极应力分布; (d), (e) SiC/Ti/TaSi2退火后沉积Pt表面形貌; (f) SiC/Ti/TaSi2退火后沉积Pt电极应力分布

    Fig. 3.  (a), (b) Surface morphology of SiC/Ti/TaSi2/Pt after high-temperature annealing; (c) electrode stress distribution of SiC/Ti/TaSi2/Pt after annealing; (d), (e) surface morphology of SiC/Ti/TaSi2 deposited Pt after annealing; (f) electrode stress distribution of SiC/Ti/TaSi2 deposited Pt after annealing.

    图 4  I-V特性 (a) 组合A(SiC/Ti/TaSi2/Pt); (b) 组合B(SiC/Ti/TaSi2形成欧姆接触后溅射Pt). 比接触电阻率与老化时间的关系 (c) 组合A(SiC/Ti/TaSi2/Pt); (d) 组合B(SiC/Ti/TaSi2形成欧姆接触后溅射Pt)

    Fig. 4.  I-V characteristics: (a) Combination A(SiC/Ti/TaSi2/Pt); (b) combination B(SiC/Ti/TaSi2 sputtered Pt after forming an ohmic contact). Specific contact resistivity versus aging time: (c) Combination A(SiC/Ti/TaSi2/Pt); (d)combination B(SiC/Ti/TaSi2 sputtered Pt after forming an ohmic contact).

    图 5  SiC/Ti/TaSi2/Pt 600 ℃老化20 h后形貌 (a), (b)表面形貌; (c)SEM截面. SiC/Ti/TaSi2退火后沉积Pt 600 ℃老化20 h后形貌 (d), (e)表面形貌; (f)SEM截面. (g) SiC/Ti/TaSi2/Pt 600 ℃老化20 h后电极应力分布; (f) SiC/Ti/TaSi2退火后沉积Pt 600 ℃老化20 h后电极应力分布

    Fig. 5.  SiC/Ti/TaSi2/Pt morphology after aging at 600 °C for 20 hours: (a), (b) Surface morphology; (c) SEM cross-section. SiC/Ti/TaSi2 annealed followed by Pt deposition, morphology after 600 °C aging for 20 hours: (d), (e) Surface morphology; (f) SEM cross-section. (g) Electrode stress distribution of SiC/Ti/TaSi2/Pt after 600 °C aging for 20 hours. (f) SiC/Ti/TaSi2 annealed and deposited with Pt, after aging at 600 °C for 20 hours, electrode stress distribution.

    图 6  组合A (Ti/TaSi2/Pt 共溅射退火)与组合B (分批次溅射退火)在600 ℃空气环境下老化不同时间的应力变化趋势

    Fig. 6.  Stress trends of combination A (Ti/TaSi2/Pt co-sputter annealed) and combination B (batch sputter annealed) aged at 600 °C in air for different time periods.

    图 7  (a) Ti/TaSi2/Pt共溅射退火老化20 h后的XRD分析;(b)Ti/TaSi2/Pt 共溅射退火的AES分析; (c)分批次溅射退火老化20 h后的XRD分析; (d)分批次溅射退火的AES分析

    Fig. 7.  (a)XRD analysis after aging for 20 hours of Ti/TaSi2/Pt co-sputtered annealing; (b) AES analysis of Ti/TaSi2/Pt co-sputtered annealing; (c) XRD analysis after aging for 20 hours of batch sputtered annealing; (d)AES analysis of batch sputtered annealing.

  • [1]

    Wright N G, Horsfall A B 2007 J. Phys. D: Appl. Phys. 40 6345Google Scholar

    [2]

    林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍 2004 物理学报 53 2780Google Scholar

    Lin H F, Xie E Q, Ma Z W, Zhang J, Peng A H, He D Y 2004 Acta Phys. Sin. 53 2780Google Scholar

    [3]

    Chen J J, Peng S P, Deng S L, Zhou W, Fan Z Q, Zhang X J 2025 Acta Phys. Sin. 74 预出版(in Chinese)[陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣 2025 物理学报 74 in Press]

    [4]

    Anoldo L, Triolo C, Panarello S, Garescì F, Russo S, Messina A A, Calabretta M, Patanè S 2021 IEEE Electron Dev. Lett. 42 1089Google Scholar

    [5]

    Ding C, Liu H, Ngo K D T, Burgos R, Lu G Q 2021 IEEE Trans. Power Electron. 36 11672Google Scholar

    [6]

    Li G, Xu M S, Zou D Y, Cui Y X, Zhong Y, Cui P, Cheong K Y, Xia J B, Nie H K, Li S Q, Linewih H, Zhang B T, Xu X G, Han J S 2023 Crystals 13 1106Google Scholar

    [7]

    Sze S M 2006 Physics of Semiconductor Devices (New York) pp335-339

    [8]

    Shi M(translated by Zhao H M)2002 Semiconductor Device Physics and Processes (2nd Edition) (Suzhou: Suzhou University Press) pp226-227 (in Chinese)

    [9]

    Vivona M, Greco G, Lo Nigro R, Bongiorno C, Roccaforte F 2015 Journal of Applied Physics 118 035705Google Scholar

    [10]

    Evans L J, Okojie R S, Lukco D 2012 Mater. Sci. Forum 717-720 841

    [11]

    T G 2017 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [12]

    Zhang Q W, Liu Y, Li H F, Wang J, Wang Y, Cheng F B, Han H J, Zhang P 2024 Sensors 24 7731Google Scholar

    [13]

    Han L B, Liang L, Kang Y, Qiu Y F 2021 IEEE Trans. Power Electron. 36 2080Google Scholar

    [14]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [15]

    Liu C Y, Du J F, Rong L M, Luo T C, Gao K, Yin Y G, Xu J 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS) Shenzhen, China, November 23-25, 2020 pp247-250

    [16]

    Okojie R S, Lukco D, Chen Y L, Spry D J 2002 J. Appl. Phys. 91 6553Google Scholar

    [17]

    Wu C, Fang X D, Kang Q, Fang Z Y, Sun H, Zhang D, Zhao L B, Tian B, Maeda R, Jiang Z D 2023 J. Mater. Res. Technol. 24 2428Google Scholar

    [18]

    Zhang M L, Ren X R, Chu H G, Lv J S, Li W, Wang W G, Yang Q Q, Feng P Z 2020 Corros. Sci. 177 108982Google Scholar

    [19]

    Zhu H J, Yang T, Zhou Y, Hua S, Yang J W 2019 De Gruyter Brill 74 353

    [20]

    Ng K K, Liu R 1990 IEEE Trans. Electron Dev. 37 1535Google Scholar

    [21]

    Berger H H 1972 J. Electrochem. Soc. 119 507Google Scholar

    [22]

    王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎 2000 物理学报 49 1348Google Scholar

    Wang Y Y, Zhen C M, Gong H X, Yan Z J, Wang Y F, Liu X Q, Yang Y H, He S H 2000 Acta Phys. Sin. 49 1348Google Scholar

    [23]

    Yu S Z, Song Y, Dong J R, Sun Y R, Zhao Y M, He Y 2016 Chin. Phys. B 25 118101Google Scholar

    [24]

    Scorzoni A, Finetti M 1988 Materials Science Reports 3 79Google Scholar

    [25]

    Zhou S X, Ai L K, Qi M, Xu A H, Yan J S, Li S S, Jin Z 2021 Chin. Phys. B 30 027304Google Scholar

    [26]

    Qiao X X, Xia T L, Chen P 2021 Chin. Phys. B 30 018104Google Scholar

    [27]

    Sha Y C, Li Z W, Jia Z C, Han B, Ni X W 2023 Chin. Phys. B 32 106104Google Scholar

    [28]

    Huang S S, Zhang X 2006 J. Micromech. Microeng. 16 382Google Scholar

    [29]

    Han L L, Du C H, Ma Z G, Jiang Y, Xiong K L, Wang W X, Chen H, Deng Z, Jia H Q 2021 Chin. Phys. Lett. 38 068102Google Scholar

    [30]

    Santerre F, El Khakani M A, Chaker M, Dodelet J P 1999 Appl. Surf. Sci. 148 24Google Scholar

    [31]

    Kwong D L 1984 Thin Solid Films 121 43Google Scholar

    [32]

    Yoon D S, Lee S M, Baik H K 2000 J. Electrochem. Soc. 147 3477Google Scholar

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20211434
    [2] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, doi: 10.7498/aps.70.20210503
    [3] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, doi: 10.7498/aps.69.20191720
    [4] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, doi: 10.7498/aps.69.20200232
    [5] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, doi: 10.7498/aps.68.20190350
    [6] 何天立, 魏鸿源, 李成明, 李庚伟. n型GaN过渡族难熔金属欧姆电极对比. 物理学报, doi: 10.7498/aps.68.20190717
    [7] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, doi: 10.7498/aps.67.20181095
    [8] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, doi: 10.7498/aps.64.127304
    [9] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, doi: 10.7498/aps.63.117302
    [10] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, doi: 10.7498/aps.63.127302
    [11] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, doi: 10.7498/aps.61.177201
    [12] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, doi: 10.7498/aps.61.097802
    [13] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, doi: 10.7498/aps.61.028101
    [14] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, doi: 10.7498/aps.60.098108
    [15] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, doi: 10.7498/aps.59.5706
    [16] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, doi: 10.7498/aps.59.3466
    [17] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, doi: 10.7498/aps.57.6007
    [18] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, doi: 10.7498/aps.57.2445
    [19] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, doi: 10.7498/aps.53.3225
    [20] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, doi: 10.7498/aps.51.1793
计量
  • 文章访问数:  199
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 修回日期:  2025-08-08
  • 上网日期:  2025-09-02

/

返回文章
返回