搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状和声学表面结构的压电超声换能器

林基艳 李耀 陈诚 林书玉 郭林伟 徐洁

引用本文:
Citation:

柱状和声学表面结构的压电超声换能器

林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁

Piezoelectric ultrasonic transducers with columnar and acoustic surface structures

LIN Jiyan, LI Yao, CHEN Cheng, LIN Shuyu, GUO Linwei, XU Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 圆孔型声子晶体, 因结构简单、制作方便, 被广泛应用于换能器的性能优化研究. 研究发现, 圆孔型声子晶体结构的孔隙越大, 弹性波的能量局域化效果越好. 但是高孔隙度意味着圆孔间的距离较窄, 会大幅降低结构的机械强度. 柱状声子晶体结构的提出, 解决了圆孔型声子晶体结构需要高孔隙度, 对结构尺寸精度要求高的问题, 为压电超声换能器的性能优化提供了新思路. 利用在换能器的前、后盖板上加工的柱状和声学表面结构, 操控声波的传输行为和路径, 从而实现对换能器中耦合振动的有效控制, 不仅解决了换能器因振动能量不能均匀传递而导致的辐射面振幅分布不均匀的问题, 还使其辐射面的位移振幅得到了显著提升, 提高了换能器的工作效率. 仿真计算结果揭示了柱状和声学表面结构的配置对换能器性能的影响规律, 实验结果证明柱状和声学表面结构可以有效提升压电超声换能器的性能, 研究可以为换能器的工程计算及优化提供系统的设计理论证明.
    The band gap, localization, and waveguide characteristics of phononic crystal structures offer extensive potential applications in transducer field, particularly for circular-hole phononic crystals, which are extensively utilized in research on performance optimization of transducers due to their straightforward structure and easy fabrication. Nonetheless, studies have revealed that the bandgap width of circular-hole phononic crystal structures is directly proportional to their porosity. Typically, a higher porosity leads to enhanced energy localization of elastic waves. However, high porosity implies a narrower distance between circular holes, greatly reducing the mechanical strength of the structure. The introduction of columnar phononic crystal structures solves the problems of high porosity and strict dimensional accuracy requirements in circular-hole phononic crystal structures, providing a new approach for enhancing the performance of piezoelectric ultrasonic transducers.This study employs cylindrical and acoustic surface structures fabricated on the front and rear cover plates of piezoelectric ultrasonic transducers to manipulate the transmission behavior and pathway of sound waves, thereby achieving effective control over coupled vibrations within the transducer. This approach not only solves the problem of uneven amplitude distribution on the radiation surface due to uneven vibration energy transmission but also markedly enhances the displacement amplitude of the transducer’s radiation surface, ultimately enhancing its operational efficiency. The simulation results elucidate the influences of the configuration of these cylindrical and acoustic surface structures on transducer performance. Experimental findings further validate that these structures can effectively improve the performance of piezoelectric ultrasonic transducers. This study provides systematic design theory support for the engineering calculation and optimization of transducers.
  • 图 1  大尺寸换能器的结构和振型图 (a) 结构图; (b) 振型图; (c) 辐射面位移分布图

    Fig. 1.  Structure and vibration mode diagram of large-sized transducer: (a) Structural diagram; (b) vibration mode diagram; (c) displacement distribution diagram of radiation surface.

    图 2  大尺寸换能器的辐射面位移振幅

    Fig. 2.  Radiation surface displacement amplitude of large-sized transducer.

    图 3  柱状和声学表面结构的前盖板的结构示意图

    Fig. 3.  Schematic diagram of the front cover plate with columnar and acoustic surface structures.

    图 4  柱状和声学表面结构的前盖板的俯视图和侧视图

    Fig. 4.  Top and side views of the front cover plate with columnar and acoustic surface structures.

    图 5  柱状和声学表面结构换能器的后盖板的结构示意图

    Fig. 5.  Structural schematic diagram of optimized rear cover plate.

    图 6  柱状和声学表面结构的压电超声换能器的结构和振型图

    Fig. 6.  Structural and vibration mode diagrams of piezoelectric ultrasonic transducer with columnar and acoustic surface structure.

    图 7  辐射面位移振幅对比

    Fig. 7.  Comparison of displacement amplitude of radiation surface.

    图 8  柱状结构的边长和高度对换能器性能的影响

    Fig. 8.  Influences of the side length and height of columnar structures on the performance of transducers.

    图 9  圆柱体孔的半径对换能器性能的影响

    Fig. 9.  Influence of the radius of the cylindrical hole on the performance of the transducer.

    图 10  环槽的高度对换能器性能的影响

    Fig. 10.  Influence of the height of the ring groove on the performance of the transducer.

    图 11  表面凹槽的厚度对换能器性能的影响.

    Fig. 11.  Influence of the thickness of surface grooves on the performance of transducers.

    图 12  柱状和声学表面结构的压电超声换能器的实物图

    Fig. 12.  Physical image of piezoelectric ultrasonic transducer with columnar and acoustic surface structure.

    图 13  柱状和声学表面结构的压电超声换能器的阻抗特性测量过程图

    Fig. 13.  Measurement process diagram of impedance characteristics of piezoelectric ultrasonic transducers with columnar and acoustic surface structures.

    图 14  柱状和声学表面结构的压电超声换能器的输入电阻抗与谐振频率的测量 (a) 测量结果; (b) 仿真导纳曲线图

    Fig. 14.  Measurement of input impedance and resonant frequency of piezoelectric ultrasonic transducers with columnar and acoustic surface structures: (a) Measurement results; (b) simulation admittance curve.

    图 15  换能器的辐射面位移振幅分布的实验测量 (a) 测试图; (b) 柱状和声学表面结构的压电超声换能器的测量结果; (c) 未优化换能器的测量结果

    Fig. 15.  Experimental measurement of the displacement amplitude distribution of the radiation surface of the transducer: (a) Test chart; (b) measurement results of piezoelectric ultrasonic transducers with columnar and acoustic surface structures; (c) measurement results of the transducer have not been optimized.

    表 1  大尺寸换能器的详细参数

    Table 1.  Detailed parameters of large-sized transducer.

    组件名称材料形状上底半径
    /mm
    下底半径
    /mm
    高度
    /mm
    后盖板Steel AISI
    4340 钢
    等截面
    圆柱
    313130
    前盖板Aluminium
    6063-T83
    圆台315035
    压电陶瓷
    圆环(2片)
    PZT-4等截面
    圆环
    内径7
    外径30
    内径7
    外径30
    8
    下载: 导出CSV

    表 2  (3)式—(6)式中各常数取值

    Table 2.  The values of the constants in Eqs. (3)—(6).

    A B C D
    (3)式 x为柱高 19651.327 –277.955 11.400 –0.142
    x为柱边长 10141.232 2616.509 –221.630 7.083
    x为圆柱体孔半径 17511.585 –3.807 4.071 –0.893
    x为环槽高度 17405.221 88.233 –26.829 3.145
    x为凹槽厚度 17512.152 4.646 –0.732 0.746×10–1
    (4)式 y为圆柱体孔半径 17511.585 –3.807 4.071 –0.893
    y为环槽高度 17405.221 88.233 –26.829 3.145
    (5)式 y1为表面凹槽厚度 2.909×10–4 8.421×10–6
    (6)式 z为柱高 41.422 4.051 0.022 –0.454×10–2
    z为柱边长 –572.671 386.836 –72.945 4.206
    z为圆柱体孔半径 87.149 5.651 –0.866 –0.174
    z为环槽的高度 91.649 4.283 –1.871 0.221
    下载: 导出CSV
  • [1]

    Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533Google Scholar

    [2]

    Takeda K, Tanaka H, Tsuchiya T, Kaneko S 1998 Ultrasonics 36 75Google Scholar

    [3]

    Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812Google Scholar

    [4]

    Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872Google Scholar

    [5]

    Peters D 1996 J. Mater. Chem. 6 1605Google Scholar

    [6]

    An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. Manu. 26 559

    [7]

    Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensor. Actuat. A: Phys. 381 116037Google Scholar

    [8]

    Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812Google Scholar

    [9]

    Ronda S, Francisco M de E. 2018 Adv. Appl. Ceram. 117 177Google Scholar

    [10]

    李照希 2022 博士学位论文 (西安: 西安电子科技大学)

    Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University

    [11]

    秦振杰 2023 硕士学位论文 (太原: 中北大学)

    Qin Z J 2023 M. S. Thesis (Taiyuan: North University of China

    [12]

    张利娟 2022 硕士学位论文 (镇江: 江苏大学)

    Zhang L J 2022 M. S. Thesis (Zhenjiang: Jiangsu University

    [13]

    宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)

    Song M X 2020 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [14]

    王燕萍 2023 硕士学位论文 (广州: 广东工业大学)

    Wang Y P 2023 M. S. Thesis (Guangzhou: Guangdong University of Technology

    [15]

    林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 094311Google Scholar

    Lin J Y, Lin S Y, Wang S, Li Y 2021 Sci. Sin. Phys. Mech. Astron. 51 094311Google Scholar

    [16]

    李婧 2021 博士学位论文 (太原: 中北大学)

    Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China

    [17]

    Wang S, Chen C, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 152 193Google Scholar

    [18]

    Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640Google Scholar

    [19]

    孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378

    Sun X Y, Yan Q, Guo X Y 2021 J. Synt. Crys. 50 1378

    [20]

    程晓茹 2021 硕士学位论文 (兰州: 兰州大学)

    Chen X R 2021 M. S. Thesis (Lanzhou: Lanzhou University

    [21]

    尉浪浪 2023 硕士学位论文 (太原: 中北大学)

    Yu L L 2023 M. S. Thesis (Taiyuan: North University of China

    [22]

    谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)

    Tan Z H 2021 M. S. Thesis (Lanzhou: Lanzhou Jiaotong University

    [23]

    张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96

    Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois. Vibr. Cont. 44 96

    [24]

    Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. Cont. 45 674Google Scholar

    [25]

    Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. Actu. A. Phys. 333 113298Google Scholar

    [26]

    Dryburgh P , Smith J R , Marrow P , Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171

    [27]

    Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131Google Scholar

  • [1] 刘迎春, 朱元博, 张洪军, 刘海顺, 曹文武. 织构(Ba, Ca)(Zr, Ti)O3陶瓷全矩阵机电性能及超声换能器应用. 物理学报, doi: 10.7498/aps.74.20250835
    [2] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [3] 叶文旭, 江昊, 王怡, 林书玉. 基于声黑洞结构的夹心式弯曲振动超声换能器. 物理学报, doi: 10.7498/aps.74.20250767
    [4] 林基艳, 李耀, 陈诚, 刘卫东, 林书玉, 郭林伟, 徐洁. 表面与缺陷调控型大功率压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250047
    [5] 许龙, 李雪松, 姚磊, 龚涛, 梁召峰. 纵弯正交耦合压电超声振动系统的设计及振动性能. 物理学报, doi: 10.7498/aps.74.20250294
    [6] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, doi: 10.7498/aps.72.20222110
    [7] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, doi: 10.7498/aps.72.20221547
    [8] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, doi: 10.7498/aps.72.20230195
    [9] 安志鸿, 黄林敏, 赵锦波, 胡倩倩, 孙转兰, 郑欢, 张晓青. 面向空耦电声换能器应用的高性能FEP/PTFE复合膜压电驻极体. 物理学报, doi: 10.7498/aps.71.20211609
    [10] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, doi: 10.7498/aps.69.20200980
    [11] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, doi: 10.7498/aps.68.20190245
    [12] 王莎, 林书玉. 基于二维声子晶体的大尺寸夹心式换能器的优化设计. 物理学报, doi: 10.7498/aps.68.20181955
    [13] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, doi: 10.7498/aps.68.20191091
    [14] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, doi: 10.7498/aps.68.20190882
    [15] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, doi: 10.7498/aps.67.20181150
    [16] 舒安庆, 吴锋. 量子热声微循环的优化性能. 物理学报, doi: 10.7498/aps.65.164303
    [17] 马玺越, 陈克安, 丁少虎, 张冰瑞. 用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计. 物理学报, doi: 10.7498/aps.62.124301
    [18] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, doi: 10.7498/aps.62.167702
    [19] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, doi: 10.7498/aps.59.754
    [20] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案. 物理学报, doi: 10.7498/aps.23.41
计量
  • 文章访问数:  450
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 修回日期:  2025-07-31
  • 上网日期:  2025-09-05

/

返回文章
返回