Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intrinsic stability of organic-inorganic hybrid perovskite

Zhang Yu Zhou Huan-Ping

Citation:

Intrinsic stability of organic-inorganic hybrid perovskite

Zhang Yu, Zhou Huan-Ping
PDF
HTML
Get Citation
  • The power conversion efficiency of organic-inorganic hybrid perovskite solar cell has exceeded 24%. The rapid increase in efficiency coupled with its cost-effective fabrication has attracted tremendous attention toward the commercialization of perovskite solar cells. The biggest challenge that hinders the commercialization of perovskite solar cells is the long-term instability of materials and the corresponding devices, which cannot compete with other commercialized solar cells, such as Si cells, in terms of lifetime. The intrinsic instability of perovskite material itself is the most critical challenge faced by researchers. In this study, we discuss the intrinsic instability of organic-inorganic hybrid perovskite materials from the aspects of both chemical instability and phase instability. Suggestions for improving the stability of perovskite solar cell are provided from the perspective of composition design and fabrication process.
      Corresponding author: Zhou Huan-Ping, happy_zhou@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51722201, 51672008).
    [1]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar

    [3]

    Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar

    [4]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]

    [7]

    Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [10]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar

    [11]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

    [12]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [13]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [14]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [15]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [16]

    Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar

    [17]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [18]

    TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [19]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [20]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [21]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [22]

    Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [23]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [24]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [25]

    Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar

    [26]

    Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar

    [27]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [28]

    Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar

    [29]

    Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar

    [30]

    Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar

    [31]

    Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar

    [32]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar

    [33]

    Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215

    [34]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar

    [35]

    Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar

    [36]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar

    [37]

    Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar

    [38]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [39]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [40]

    Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar

    [41]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar

    [42]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar

    [43]

    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar

    [44]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar

    [45]

    Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar

    [46]

    Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar

    [47]

    Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [48]

    Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar

    [49]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [50]

    Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [52]

    Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar

    [53]

    Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar

    [54]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [55]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [56]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

    [57]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [58]

    Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3

    [59]

    Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar

    [60]

    Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar

    [61]

    Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar

    [62]

    Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar

    [63]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [64]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [65]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [66]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar

    [67]

    Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar

    [68]

    Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [69]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [70]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [71]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar

    [72]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [73]

    Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [74]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [75]

    van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar

    [76]

    Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar

    [77]

    Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar

    [78]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [79]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar

    [80]

    Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8

    [81]

    Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284

    [82]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [83]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar

    [84]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [85]

    CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar

    [86]

    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [87]

    Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785

  • 图 1  MA+, FA+, Cs+, Rb+结构示意图[18]

    Figure 1.  Schematic diagram of MA+, FA+, Cs+, Rb+[18].

    图 2  RbCsFA三元钙钛矿太阳能电池最大功率点输出[18]

    Figure 2.  Maximum power point tracking of RbCsFA hybrid perovskite solar cells[18].

    图 3  Eu3+/Eu2+催化消除铅、碘零价缺陷机理[36]

    Figure 3.  Proposed mechanism diagram of cyclically elimination of Pb0 and I0 defects and regeneration of Eu3+-Eu2+ metal ion pair[36].

    图 4  PEA2MA2Pb3I10晶体结构示意图[44]

    Figure 4.  Crystal structure of PEA2MA2Pb3I10[44].

    图 5  MAPbI3中各类型点缺陷能级位置[49]

    Figure 5.  Calculated transition energy levels of point defects in MAPbI3[49].

    图 6  X射线荧光光谱显示出不同碱金属卤化物添加剂情况下的Br离子分布[85]

    Figure 6.  X-ray fluorescence mapping indicates heterogeneous distribution of Br as a function of alkali metal incorporation of the perovskite films[85].

    图 7  (a) DMA掺杂薄膜与HI酸添加薄膜对比; (b) DMA掺杂薄膜与HI酸添加薄膜XRD对比; (c) DMA掺杂薄膜与DMF和HI反应所得产物DMAI的核磁共振对比[87]

    Figure 7.  Film properties and component studies: (a) Photographs, (b) XRD spectra, (c) nuclear magnetic resonance spectra of the Cs0.7DMA0.3PbI3 films and DMAI polycrystalline powder synthesized from DMF and HI[87].

  • [1]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar

    [3]

    Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar

    [4]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]

    [7]

    Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [10]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar

    [11]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

    [12]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [13]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [14]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [15]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [16]

    Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar

    [17]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [18]

    TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [19]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [20]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [21]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [22]

    Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [23]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [24]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [25]

    Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar

    [26]

    Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar

    [27]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [28]

    Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar

    [29]

    Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar

    [30]

    Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar

    [31]

    Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar

    [32]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar

    [33]

    Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215

    [34]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar

    [35]

    Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar

    [36]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar

    [37]

    Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar

    [38]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [39]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [40]

    Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar

    [41]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar

    [42]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar

    [43]

    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar

    [44]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar

    [45]

    Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar

    [46]

    Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar

    [47]

    Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [48]

    Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar

    [49]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [50]

    Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [52]

    Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar

    [53]

    Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar

    [54]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [55]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [56]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

    [57]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [58]

    Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3

    [59]

    Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar

    [60]

    Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar

    [61]

    Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar

    [62]

    Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar

    [63]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [64]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [65]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [66]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar

    [67]

    Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar

    [68]

    Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [69]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [70]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [71]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar

    [72]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [73]

    Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [74]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [75]

    van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar

    [76]

    Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar

    [77]

    Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar

    [78]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [79]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar

    [80]

    Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8

    [81]

    Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284

    [82]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [83]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar

    [84]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [85]

    CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar

    [86]

    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [87]

    Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785

  • [1] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Meng Jing, Gao Bo-Wen. Photovoltaic performance of novel Perovskite/organic integrated solar cells with high efficiency and high stability. Acta Physica Sinica, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [6] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [7] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [8] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [9] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [10] Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan. Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite. Acta Physica Sinica, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [11] Lou Hao-Ran, Ye Zhi-Zhen, He Hai-Ping. Recent advances in photo-stability of lead halide perovskites. Acta Physica Sinica, 2019, 68(15): 157102. doi: 10.7498/aps.68.20190324
    [12] Chen Liang, Zhang Li-Wei, Chen Yong-Sheng. Progress in Pb-free and less-Pb organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [13] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] Guo Hong-Wei, Liu Ran, Wang Ling-Rui, Cui Jin-Xing, Song Bo, Wang Kai, Liu Bing-Bing, Zou Bo. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3. Acta Physica Sinica, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [15] Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun. Theoretical study on the stability and photoelectric properties of APbI3 perovskite. Acta Physica Sinica, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [16] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [17] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [18] Zheng Ying-Ying, Deng Hai-Tao, Wan Jing, Li Chao-Rong. Bandgap energy tuning and photoelectrical properties of self-assembly quantum well structure in organic-inorganic hybrid perovskites. Acta Physica Sinica, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [19] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men, Wang Yue-Hu, Guo Hui. Stability of the intrinsic defects in unintentionally doped 4H-SiC epitaxial layer. Acta Physica Sinica, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [20] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
Metrics
  • Abstract views:  19419
  • PDF Downloads:  497
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2019
  • Accepted Date:  03 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回