Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of efficient green perovskite light emitting diodes

Qu Zi-Han Chu Ze-Ma Zhang Xing-Wang You Jing-Bi

Citation:

Research progress of efficient green perovskite light emitting diodes

Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi
PDF
HTML
Get Citation
  • Perovskite light emitting diodes exhibit the advantages of high color purity, tunable wavelength and low producing cost. Considering these superiorities, one regards perovskite light emitting diodes as very promising candidates for solid state lighting and panel displaying. Human eyes are very sensitive to green light, thus green perovskite light emitting diodes receive the most attention from researchers. Since the advent of the very first green perovskite light emitting diode, the external quantum efficiency has climbed from only 0.1% to over 20%. In this review, we mainly discuss the history of green perovskite light emitting diodes, the basic concepts of perovskite materials and green perovskite light emitting diodes, and the common methods to improve the efficiency of green perovskite light emitting diodes. The bandgap of bromide perovskite is about 2.3 eV, which is located just on a green light wavelength scale and thus becomes the suitable emitting layer material for green emission. There are mainly two types of device structures, i.e. regular format and inverted format. The whole working process of green perovskite light emitting diodes can be divided into two stages, i.e. the injection and recombination of charge carriers. One engineers the energy levels of different layers to improve the injection of charge carriers. They also raise up the strategy so-called surface passivation to reduce the defect density at the interface in order to avoid the quenching phenomenon. One usually inserts a buffering layer to realize the surface passivation. Besides, perovskites possess very small exciton binding energy, which is at the same order of magnitudes as the kinetic energy at room temperature. Charge carriers become free in this case, which will severely reduce the radiation recombination probability due to the non-radiation recombination process such as Shockley-Read-Hall effect and Auger recombination. To solve the problem, people fabricate three types of perovskites, namely quasi two-dimensional perovskite, perovskite quantum dot, and perovskite nanocrystal. In this way, the charge carriers can be confined into a limited space and the exciton binding energy will hence be improved. From the efficiency perspective, the green perovskite light emitting diodes promise to be commercialized. However, another critical issue impeding the development of green perovskite light emitting diodes is the stability problem. Comparing with the organic light emitting diodes and inorganic quantum dot light emitting diodes, the lifetime of perovskite light emitting diodes is too limited, which is only approximately one hundred hours under normal conditions. The temperature, moisture and light exposure are all factors that influence the stability of perovskite light emitting diodes.
      Corresponding author: You Jing-Bi, jyou@semi.ac.cn
    [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • 图 1  GPeLED效率增长趋势

    Figure 1.  Increasing trend of GPeLED’s EQE.

    图 2  钙钛矿发光二极管的典型结构 (a)正置结构; (b)倒置结构

    Figure 2.  Typical device structure of PeLED: (a) Regular structure; (b) inverted structure.

    图 3  钙钛矿材料中电子、空穴的复合机制[7]

    Figure 3.  Recombination mechanisms of electrons and holes in perovskite[7].

    图 4  结构为ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag的器件性能 (a) EQE随电流密度的变化; (b)亮度/电流密度随电压的变化[9]

    Figure 4.  Devices based on the ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag structure: (a) EQE versus current density; (b) luminance/current density versus voltage[9].

    图 5  (a)纳米晶钉扎法步骤图示; (b)纳米晶扫描电子显微镜(SEM)图[11]

    Figure 5.  (a) Schematic illustration of NCP processes; (b) SEM image of grains[11].

    图 6  (a)钙钛矿量子点TEM图[32]; (b)量子点PeLED发光峰位的调节[33]

    Figure 6.  (a) TEM graph of perovskite quantum dot[32]; (b) the gradual change of wavelength from quantum dot PeLED[33].

    图 7  准二维钙钛矿中的能量转移过程[36]

    Figure 7.  Energy transfer process in the quasi-2D perovskite[36]

    图 8  结构为ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al的器件性能 (a) CE随电压的变化; (b)亮度随电压的变化[30]

    Figure 8.  Devices based on the ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al structure: (a) Current efficiency vs. voltage; (b) luminance vs. voltage[30].

    图 9  (a) HIL掺杂后的器件能带结构图; (b) HIL掺杂前后器件的电流效率和亮度[15]

    Figure 9.  (a) Energy band diagram after HIL doping; (b) current efficiency and luminance before and after HIL doping[15].

    图 10  对PEDOT:PSS改性后的器件能带结构图[11]

    Figure 10.  Energy band diagram of the device after modification to PEDOT:PSS[11].

    图 11  (a) TOPO钝化前后的钙钛矿薄膜光致荧光(PL)谱; (b) TOPO钝化前后的钙钛矿荧光寿命[15]

    Figure 11.  (a) Photoluminescence spectrum of perovskite thin film with and without TOPO passivation; (b) fluorescence lifetime of perovskite thin film with and without TOPO passivation[15].

    表 1  部分高效GPeLED的工作寿命

    Table 1.  Working lifetime of some high-efficiency GPeLEDs.

    文献器件结构最大EQE/%寿命参数(L0 = 100 cd·m–2)
    [14]ITO/ZnO/PVP/Pero/CBP/MoO3/Al10.43T50 = 10 min
    [41]ITO/PEDOT:PSS/Pero/TPBi/LiF/Al12.1T50 = 135 min
    [15]ITO/PEDOT:PSS/Pero/TOPO/TPBi/LiF/Al14.36T50 = 4.8 h
    [4]ITO/PEDOT:PSS/Pero/PMMA/B3PYMPM/LiF/Al20.3T50 = 104.56 h
    DownLoad: CSV
  • [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • [1] Zhang Jun-Ting, Ji Ke, Xie Yu, Li Chao. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Physica Sinica, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [4] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [11] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [12] Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang. Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode. Acta Physica Sinica, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [13] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] Li Fei, Xiao Liu, Liu Pu-Kun, Yuan Guang-Jiang, Yi Hong-Xia, Wan Xiao-Sheng. Study on estimating efficiency of multistage depressed collector in traveling wave tubes. Acta Physica Sinica, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [17] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [18] Lin Han, Liu Shou, Zhang Xiang-Su, Liu Bao-Lin, Ren Xue-Chang. Enhanced external quantum efficiency of light emitting diodes by fabricating two-dimensional photonic crystal sapphire substrate with holographic technique. Acta Physica Sinica, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [19] Chen Jian, Li Xiao-Li, Li Hai-Hua, Wang Qing-Kang. Research of LED light extraction efficiency of photonic crystal with square and hexagonal lattice. Acta Physica Sinica, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [20] Li Bing-Qian, Liu Yu-Hua, Feng Yu-Chun. The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
Metrics
  • Abstract views:  19927
  • PDF Downloads:  703
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2019
  • Accepted Date:  19 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回