Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain

Liu Zeng Li Lei Zhi Yu-Song Du Ling Fang Jun-Peng Li Shan Yu Jian-Gang Zhang Mao-Lin Yang Li-Li Zhang Shao-Hui Guo Yu-Feng Tang Wei-Hua

Citation:

Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain

Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua
PDF
HTML
Get Citation
  • Gallium oxide (Ga2O3) has the natural advantages in deep ultraviolet absorbance for performing deep ultraviolet photodetection. Owing to the vital application of photodetector array in optical imaging, in this work, we introduce a 4×4 Ga2O3-based photodetector array with five-finger interdigital electrodes, in which the high-quality and uniform Ga2O3 thin film is grown by using metal-organic chemical vapor deposition technique, and the device is fabricated by using the following methods: ultraviolet photolithography, lift-off, and ion beam sputtering . The photodetector cell possesses a responsivity of 2.65×103 A/W, a detectivity of 2.76×1016 Jones, an external quantum efficiency of (1.29×106)%, and a photoconductive gain as high as 12900. The 16-cells in this array show good uniformity. In this work the great application potential of gallium oxide deep ultraviolet detector array is illustrated from the perspective of optoelectronic performance and application prospect.
      Corresponding author: Liu Zeng, zengliu@njupt.edu.cn ; Guo Yu-Feng, yfguo@njupt.edu.cn ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115, XK1060921002), the National Natural Science Foundation of China (Grant No. 61774019), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202103021223185).
    [1]

    McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar

    [2]

    葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703Google Scholar

    Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar

    [3]

    Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar

    [4]

    Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar

    [5]

    Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar

    [6]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [7]

    Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    刘增 2021 博士学位论文 (北京: 北京邮电大学)

    Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [10]

    Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar

    [11]

    Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar

    [12]

    陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页

    Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)

    [13]

    Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar

    [14]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [15]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [16]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

    [17]

    Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar

    [18]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [19]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [20]

    Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar

    [21]

    Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar

    [22]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [23]

    Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar

    [24]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [25]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [26]

    Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar

    [27]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [28]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [29]

    Wager J F 2003 Science 300 1245Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [32]

    欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170Google Scholar

    Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar

    [33]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [34]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [35]

    Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar

    [36]

    Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar

  • 图 1  MOCVD生长的Ga2O3薄膜 (a) XRD图; (b) 表面SEM图; (c) 表面AFM图; (d) 紫外-可见光吸收光谱, 内插图为(αhv)2hv的函数曲线

    Figure 1.  The MOCVD-grown Ga2O3 thin film: (a) The XRD pattern; (b) surface SEM image; (c) AFM image; (d) UV-vis absorbance spectrum, The inset is the relationship of (αhv)2 and hv.

    图 2  (a) 2 in薄膜上制备的6只Ga2O3探测器阵列的平面结构示意图; (b) 图(a)蓝色框内探测器阵列的结构示意图; (c) 图(b)中红色框局部放大图

    Figure 2.  (a) The schematic diagrams of the six Ga2O3 photodetector arrays; (b) the enlarged portion of blue mark in figure (a); (c) the enlarged portion of red mark in Fig. (b).

    图 3  Ga2O3探测器阵列 (a)线性I-V特性曲线; (b) 对数I-V特性曲线; (c)光电流与光强的关系图; (d)动态响应图

    Figure 3.  (a) The linear I-V; (b) semi-log I-V; (c) the relationship of photocurrent and light intensity; (d) the time-resolved transient photo response of the Ga2O3 photodetector array.

    图 4  10 V偏压下, 16个探测器单元在不同光强的入射光照射下暗电流与光电流的统计数值

    Figure 4.  The statistic photo and dark current of the 16 photodetector cells at 10 V, under the illuminations with various light intensities.

  • [1]

    McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar

    [2]

    葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703Google Scholar

    Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar

    [3]

    Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar

    [4]

    Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar

    [5]

    Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar

    [6]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [7]

    Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    刘增 2021 博士学位论文 (北京: 北京邮电大学)

    Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [10]

    Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar

    [11]

    Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar

    [12]

    陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页

    Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)

    [13]

    Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar

    [14]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [15]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [16]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

    [17]

    Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar

    [18]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [19]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [20]

    Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar

    [21]

    Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar

    [22]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [23]

    Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar

    [24]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [25]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [26]

    Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar

    [27]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [28]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [29]

    Wager J F 2003 Science 300 1245Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [32]

    欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170Google Scholar

    Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar

    [33]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [34]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [35]

    Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar

    [36]

    Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [4] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [5] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [6] Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua. Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction. Acta Physica Sinica, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [7] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [8] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [9] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [10] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [11] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [12] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [13] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [14] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [15] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [16] Li Jiang-Jiang, Gao Zhi-Yuan, Xue Xiao-Wei, Li Hui-Min, Deng Jun, Cui Bi-Feng, Zou De-Shu. On-chip fabrication of lateral growth ZnO nanowire array UV sensor. Acta Physica Sinica, 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [17] Qi Jun-Jie, Xu Min-Xuan, Hu Xiao-Feng, Zhang Yue. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials. Acta Physica Sinica, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [18] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [19] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [20] Pan Hui-Ping, Cheng Feng-Feng, Li Lin, Horng Ray-Hua, Yao Shu-De. Structrual analyses of Ga2+xO3-x thin films grown on sapphire substrates. Acta Physica Sinica, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
Metrics
  • Abstract views:  4686
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2022
  • Accepted Date:  13 June 2022
  • Available Online:  12 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回