Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of applications of freestanding single crystal oxide thin film

Peng Ruo-Bo Dong Guo-Hua Liu Ming

Citation:

Research progress of applications of freestanding single crystal oxide thin film

Peng Ruo-Bo, Dong Guo-Hua, Liu Ming
PDF
HTML
Get Citation
  • Flexible electronics have aroused great interest of researchers because of their wide applications in information storage, energy harvesting and wearable device. To realize extraordinary functionalities, freestanding single crystal oxide thin film is utilized due to its super elasticity, easy-to-transfer, and outstanding ferro/electric/magnetic properties. Using the state-of-art synthesis methods, functional oxide films of various materials can be obtained in freestanding phase, which eliminates the restrictions from growth substrate and is transferable to other flexible layers. In this work, we first introduce wet etching and mechanical exfoliation methods to prepare freestanding single crystal oxide thin film, then review their applications in ferroelectric memory, piezoelectric energy harvester, dielectric energy storage, correlated oxide interface, and novel freestanding oxide structure. The recent research progress and future outlooks are finally discussed.
      Corresponding author: Dong Guo-Hua, guohuadong@xjtu.edu.cn ; Liu Ming, mingliu@xjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3205701), the National Natural Science Foundation of China (Grant Nos. U22A2019, 91964109, 52002310), and the Innovation Team Support Project of Shaanxi Province, China (Grant No. 2021TD-12).
    [1]

    Yao G, Kang L, Li J, Long Y, Wei H, Ferreira C A, Jeffery J J, Lin Y, Cai W B, Wang X D 2018 Nat. Commun. 9 5349Google Scholar

    [2]

    Kohlstedt H, Mustafa Y, Gerber A, Petraru A, Fitsilis M, Meyer R, Böttger U, Waser R 2005 Microelectron. Eng. 80 296Google Scholar

    [3]

    Kim J, Son D, Lee M, Song C Y, Song J K, Koo J H, Lee D J, Shim H J, Kim J H, Lee M, Hyeon T, Kim D H 2016 Sci. Adv. 2 e1501101Google Scholar

    [4]

    Long Y, Wei H, Li J, Yao G, Yu B, Ni D L, Gibson A L, Lan X L, Jiang Y D, Cai W B, Wang X D 2018 ACS Nano 12 12533Google Scholar

    [5]

    Baek S H, Park J, Kim D M, Aksyuk V A, Das R R, Bu S D, Felker D A, Lettieri J, Vaithyanathan V, Bharadwaja S S, Bassiri-Gharb N, Chen Y B, Sun H P, Folkman C M, Jang H W, Kreft D J, Streiffer S K, Ramesh R, Pan X Q, Trolier-Mckinstry S, Schlom D G, Rzchowski M S, Blick R H, Eom C B 2011 Science 334 958Google Scholar

    [6]

    郭庆磊, 张苗, 狄增峰, 黄高山, 梅永丰 2016 中国科学: 物理学 力学 天文学 46 97Google Scholar

    Guo Q L, Zhang M, Di Z F, Huang G S, Mei Y F 2016 Sci. China Phys. Mech. 46 97Google Scholar

    [7]

    Elangovan H, Barzilay M, Seremi S, Cohen N, Jiang Y Z, Martin L W, Ivry Y 2020 ACS Nano 14 5053Google Scholar

    [8]

    Bakaul S R, Kim J, Hong S, Cherukara M J, Zhou T, Stan L, Serrao C R, Salahuddin S, Petford-Long A K, Fong D D, Holt M V 2020 Adv. Mater. 32 1907036Google Scholar

    [9]

    Shi Q W, Parsonnet E, Cheng X X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X X, Chang X, Zhang H R, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [10]

    Hou W X, Yao M T, Qiu R B, Wang Z C, Zhou Z Y, Shi K Q, Pan J Y, Liu M, Hu J F 2021 J. Alloy. Compd. 887 161470Google Scholar

    [11]

    Salles P, Guzmán R, Zanders D, Quintana A, Fina I, Sánchez F, Zhou W, Devi A, Coll M 2022 ACS Appl. Mater. Interfaces 14 12845Google Scholar

    [12]

    Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar

    [13]

    Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C M, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547Google Scholar

    [14]

    Singh P, Swartz A, Lu D, Hong S S, Lee K, Marshall A F, Nishio K, Hikita Y, Hwang H Y 2019 ACS Appl. Electron. Mater. 1 1269Google Scholar

    [15]

    Wong W S, Sands T, Cheung N W 1998 Appl. Phys. Lett. 72 599Google Scholar

    [16]

    Chiabrera F M, Yun S, Li Y, Dahm R T, Zhang H W, Kirchert C K R, Christensen D V, Trier F, Jespersen T S, Pryds N 2022 Annalen der Physik 534 2200084Google Scholar

    [17]

    Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar

    [18]

    王倩, 高能, 张天垚, 姚光, 潘泰松, 高敏, 林媛 2020 材料导报 34 01014Google Scholar

    Wang Q, Gao N, Zhang T Y, Yao G, Pan T S, Gao M, Lin Y 2020 Mater. Rep. 34 01014Google Scholar

    [19]

    Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939Google Scholar

    [20]

    Yao G, Ji Y D, Liang W Z, Gao M, Zheng S L, Wang Y, Li H D, Wang Z M, Chen C L, Lin Y 2017 Nanoscale 9 3068Google Scholar

    [21]

    Yao G, Gao M, Ji Y D, Liang W Z, Gao L, Zheng S L, Wang Y, Pang B, Chen Y B, Zeng H Z, Li H D, Wang Z M, Liu J S, Chen C L, Lin Y 2016 Sci. Rep. 6 34683Google Scholar

    [22]

    Lin Y, Feng D Y, Gao M, Ji Y D, Jin L B, Yao G, Liao F Y, Zhang Y, Chen C L 2015 J. Mater. Chem. C 3 3438Google Scholar

    [23]

    Hilton D J, Prasankumar R P, Fourmaux S, Cavalleri A, Brassard D, El Khakani M A, Kieffer J C, Taylor A J, Averitt R D 2007 Phys. Rev. Lett. 99 226401Google Scholar

    [24]

    Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514Google Scholar

    [25]

    Ji D X, Cai S H, Paudel T R, Sun H Y, Zhang C C, Han L, Wei Y F, Zang Y P, Gu M, Zhang Y, Gao W P, Huyan H X, Guo W, Wu D, Gu Z B, Tsymbal E Y, Wang P, Nie Y F, Pan X Q 2019 Nature 570 87Google Scholar

    [26]

    Zhong H, Li M Q, Zhang Q H, Yang L H, He R, Liu F, Liu Z H, Li G, Sun Q C, Xie D G, Meng F Q, Li Q, He M, Guo E J, Wang C, Zhong Z C, Wang X Q, Gu L, Yang G Z, Jin K J, Gao P, Ge C 2022 Adv. Mater. 34 2109889Google Scholar

    [27]

    Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B 2017 Nano Energy 40 587Google Scholar

    [28]

    Ma H, Xiao X, Wang Y, Sun Y F, Wang B L, Gao X Y, Wang E Z, Jiang K L, Liu K, Zhang X P 2021 Sci. Adv. 7 eabk3438Google Scholar

    [29]

    Chen Z Y, Wang B Y, Goodge B H, Lu D, Hong S S, Li D F, Kourkoutis L F, Hikita Y, Hwang H Y 2019 Phys. Rev. Mater. 3 060801Google Scholar

    [30]

    Lee D K, Park Y, Sim H, Park J, Kim Y, Kim G Y, Eom C B, Choi S Y, Son J 2021 Nat. Commun. 12 5019Google Scholar

    [31]

    Lee S, Hippalgaonkar K, Yang F, Hong J W, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J Q 2017 Science 355 371Google Scholar

    [32]

    Zhang Y, Ma C R, Lu X L, Liu M 2019 Mater. Horiz. 6 911Google Scholar

    [33]

    Han L, Fang Y H, Zhao Y Q, Zang Y P, Gu Z B, Nie Y F, Pan X Q 2020 Adv. Mater. Interfaces 7 1901604Google Scholar

    [34]

    Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, . Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [35]

    Peng B, Peng R-C, Zhang Y-Q, Dong G H, Zhou Z Y, Zhou Y, Li T, Liu Z J, Luo Z L, Wang S H, Xia Y, Qiu R B, Cheng X X, Xue F, Hu Z Q, Ren W, Ye Z G, Chen L Q, Shan Z W, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [36]

    An F, Qu K, Zhong G, Dong Y Q, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z L, Gao X S, Xie S H, Gao P, Li J Y 2020 Adv. Funct. Mater. 30 2003495Google Scholar

    [37]

    Pesquera D, Khestanova E, Ghidini M, Zhang S, Rooney A P, Maccherozzi F, Riego P, Farokhipoor S, Kim J, Moya X, Vickers M E, Stelmashenko N A, Haigh S J, Dhesi S S, Mathur N D 2020 Nat. Commun. 11 3190Google Scholar

    [38]

    Hong S S, Gu M Q, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M, Hwang H Y 2020 Science 368 71Google Scholar

    [39]

    Qi Y, Jafferis N T, Lyons K J, Lee C M, Ahmad H, Mcalpine M C 2010 Nano Lett. 10 524Google Scholar

    [40]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, Mcalpine M C 2011 Nano Lett. 11 1331Google Scholar

    [41]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H C, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 npj Flex. Electron. 6 9Google Scholar

    [42]

    Bourlier Y, Bérini B, Frégnaux M, Fouchet A, Aureau D, Dumont Y 2020 ACS Appl. Mater. Interfaces 12 8466Google Scholar

    [43]

    Chang Y W, Wu P C, Yi J B, Liu Y C, Chou Y, Chou Y C, Yang J C 2020 Nanoscale Res. Lett. 15 172Google Scholar

    [44]

    Peng H N, Lu N P, Yang S Z, Lyu Y J, Liu Z W, Bu Y F, Shen S C, Li M Q, Li Z L, Gao L, Lu S C, Wang M, Cao H, Zhou H, Gao P, Chen H H, Yu P 2022 Adv. Funct. Mater. 32 2111907Google Scholar

    [45]

    Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042Google Scholar

    [46]

    Zhang Y, Shen L K, Liu M, Li X, Lu X L, Lu L, Ma C R, Chen A P, Huang C W, Chen L, Jia C L 2017 ACS Nano 11 8002Google Scholar

    [47]

    Guo M, Yang C, Gao D, Li Q, Zhang A, Feng J, Yang H, Tao R, Fan Z, Zeng M, Zhou G F, Lu X B, Liu J M 2020 J. Mater. Sci. Technol. 44 42Google Scholar

    [48]

    Lu L, Dai Y Z, Du H C, Liu M, Wu J Y, Zhang Y, Liang Z S, Raza S, Wang D W, Jia C L 2020 Adv. Mater. Interfaces 7 1901265Google Scholar

    [49]

    Liu J D, Feng Y, Tang R J, Zhao R, Gao J, Shi D N, Yang H 2018 Adv. Electron. Mater. 4 1700522Google Scholar

    [50]

    Lee S A, Hwang J Y, Kim E S, Kim S W, Choi W S 2017 ACS Appl. Mater. Interfaces 9 3246Google Scholar

    [51]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [52]

    Zhang Q, Xie L, Liu G Q, Prokhorenko S, Nahas Y, Pan X Q, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [53]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [54]

    Lu L, Nahas Y, Liu M, Du H C, Jiang Z J, Ren S P, Wang D W, Jin L, Prokhorenko S, Jia C L, Bellaiche L 2018 Phys. Rev. Lett. 120 177601Google Scholar

    [55]

    Das S, Tang Y L, Hong Z, Gonçalves M P, Mccarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [56]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [57]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [58]

    Yadav A K, Nguyen K X, Hong Z J, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C M, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [59]

    Han L, Addiego C, Prokhorenko S, Wang M Y, Fu H Y, Nahas Y, Yan X X, Cai S H, Wei T Q, Fang Y H, Liu H Z, Ji D X, Guo W, Gu Z B, Yang Y R, Wang P, Bellaiche L, Chen Y F, Wu D, Nie Y F, Pan X Q 2022 Nature 603 63Google Scholar

    [60]

    Sun H Y, Wang J R, Wang Y S, Guo C Q, Gu J H, Mao W, Yang J F, Liu Y W, Zhang T T, Gao T Y, Fu H Y, Zhang T J, Hao Y F, Gu Z B, Wang P, Huang H B, Nie Y F 2022 Nat. Commun. 13 4332Google Scholar

    [61]

    Luo Z D, Peters J J P, Sanchez A M, Alexe M 2019 ACS Appl. Mater. Interfaces 11 23313Google Scholar

    [62]

    Li R N, Xu Y M, Song J M, Wang P, Li C, Wu D 2020 Appl. Phys. Lett. 116 222904Google Scholar

    [63]

    Zhao Z, Abdelsamie A, Guo R, Shi S, Zhao J H, Lin W N, Sun K X, Wang J W, Wang J L, Yan X B, Chen J S 2022 Nano Res. 15 2682Google Scholar

    [64]

    Li H L, Wang R P, Han S T, Zhou Y 2020 Polym. Int. 69 533Google Scholar

    [65]

    Puebla S, Pucher T, Rouco V, Sanchez-Santolino G, Xie Y, Zamora V, Cuellar F A, Mompean F J, Leon C, Island J O, Garcia-Hernandez M, Santamaria J, Munuera C, Castellanos-Gomez A 2022 Nano. Lett. 22 7457Google Scholar

    [66]

    Mulaosmanovic H, Breyer E T, Dünkel S, Beyer S, Mikolajick T, Slesazeck S 2021 Nanotechnology 32 502002Google Scholar

    [67]

    Tian B B, Wang J L, Fusil S, Liu Y, Zhao X L, Sun S, Shen H, Lin T, Sun J L, Duan C G, Bibes M, Barthelemy A, Dkhil B, Garcia V, Meng X J, Chu J H 2016 Nat. Commun. 7 11502Google Scholar

    [68]

    Hou P F, Yang K X, Ni K K, Wang J B, Zhong X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C. 6 5193Google Scholar

    [69]

    Lu D, Crossley S, Xu R J, Hikita Y, Hwang H Y 2019 Nano Lett. 19 3999Google Scholar

    [70]

    Ren C L, Zhong G K, Xiao Q, Tan C B, Feng M, Zhong X L, An F, Wang J B, Zi M F, Tang M K, Tang Y, Jia T T, Li J Y 2020 Adv. Funct. Mater. 30 1906131Google Scholar

    [71]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [72]

    Wang Z L, Jiang T, Xu L 2017 Nano Energy 39 9Google Scholar

    [73]

    毕亚琪 2020 硕士学位论文 (北京: 北京交通大学)

    Bi Y Q 2020 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [74]

    Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S H 2019 Nano Energy 55 182Google Scholar

    [75]

    Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880Google Scholar

    [76]

    Li X X, Yin Z G, Zhang X W, Wang Y, Wang D G, Gao M L, Meng J H, Wu J L, You J B 2019 Adv. Mater. Technol. 4 1800695Google Scholar

    [77]

    Noh M S, Kim S, Hwang D K, Kang C Y 2017 Sensors Actuat. A-Phys. 261 288Google Scholar

    [78]

    Li H, Lim S 2022 Nanomaterials 12 2910Google Scholar

    [79]

    Shi K M, Chai B, Zou H Y, Shen P Y, Sun B, Jiang P K, Shi Z W, Huang X Y 2021 Nano Energy 80 105515Google Scholar

    [80]

    Zhao B B, Chen Z X, Cheng Z F, Wang S, Yu T, Yang W D, Li Y 2022 ACS Appl. Nano Mater. 5 8417Google Scholar

    [81]

    Lee M, Renshof J R, Van Zeggeren K J, Houmes M J A, Lesne E, Šiškins M, Van Thiel T C, Guis R H, Van Blankenstein M R, Verbiest G J, Caviglia A D, Van Der Zant H S J, Steeneken P G 2022 Adv. Mater. 34 2204630Google Scholar

    [82]

    Davidovikj D, Groenendijk D J, Monteiro A M R V L, Dijkhoff A, Afanasiev D, Šiškins M, Lee M, Huang Y, Van Heumen E, Van Der Zant H S J, Caviglia A D, Steeneken P G 2020 Commun. Phys. 3 163Google Scholar

    [83]

    Lee M, Robin M P, Guis R H, Filippozzi U, Shin D H, Van Thiel T C, Paardekooper S P, Renshof J R, Van Der Zant H S J, Caviglia A D, Verbiest G J, Steeneken P G 2022 Nano Lett. 22 1475Google Scholar

    [84]

    Wang X, Wu Z P, Cui W, Zhi Y S, Li Z P, Li P G, Guo D Y, Tang W H 2019 Chin. Phys. B 28 017305Google Scholar

    [85]

    Hu L F, Wu L M, Liao M Y, Fang X S 2011 Adv. Mater. 23 1988Google Scholar

    [86]

    Valdman L, Mazánek V, Marvan P, Serra M, Arenal R, Sofer Z 2021 Adv. Opt. Mater. 9 2100845Google Scholar

    [87]

    Wang G, Lu Z L, Li Y, Li L H, Ji H F, Feteira A, Zhou D, Wang D W, Zhang S J, Reaney I M 2021 Chem. Rev. 121 6124Google Scholar

    [88]

    Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [89]

    Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M 2013 Adv. Mater. 25 1734Google Scholar

    [90]

    Li Q, Liu F H, Yang T N, Gadinski M R, Zhang G Z, Chen L Q, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995Google Scholar

    [91]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q Q 2019 Nano Energy 56 138Google Scholar

    [92]

    Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar

    [93]

    Shen X, Zheng Q B, Kim J K 2021 Prog. Mater. Sci. 115 100708Google Scholar

    [94]

    Wang T, Peng R C, Dong G H, Du Y J, Zhao S S, Zhao Y N, Zhou C, Yang S, Shi K Q, Zhou Z Y, Liu M, Pan J Y 2022 ACS Appl. Mater. Interfaces 14 17849Google Scholar

    [95]

    Wang T, Peng R C, Peng W, Dong G H, Zhou C, Yang S, Zhou Z Y, Liu M 2022 Adv. Funct. Mater. 32 2108496Google Scholar

    [96]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [97]

    Han K, Hu K G, Li X, Huang K, Huang Z, Zeng S W, Qi D C, Ye C, Yang J, Xu H, Ariando A, Yi J B, Lü W M, Yan S S, Wang X R 2019 Sci. Adv. 5 eaaw7286Google Scholar

    [98]

    Erlandsen R, Dahm R T, Trier F, Scuderi M, Di Gennaro E, Sambri A, Reffeldt Kirchert C K, Pryds N, Granozio F M, Jespersen T S 2022 Nano Lett. 22 4758Google Scholar

    [99]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [100]

    Zhang C, Ding S S, Qiao K M, Li J, Li Z, Yin Z, Sun J R, Wang J, Zhao T Y, Hu F X, Shen B G 2021 ACS Appl. Mater. Interfaces 13 28442Google Scholar

    [101]

    Jin C, Zhu Y M, Han W Q, Liu Q, Hu S X, Ji Y J, Xu Z D, Hu S B, Ye M, Chen L 2020 Appl. Phys. Lett. 117 252902Google Scholar

    [102]

    Huang J J, Zhang D, Liu J C, Wang H Y 2022 Mater. Res. Lett. 10 287Google Scholar

    [103]

    Jin C, Zhu Y M, Li X W, An F, Han W Q, Liu Q, Hu S X, Ji Y J, Xu Z D, Hu S B, Ye M, Zhong G K, Gu M, Chen L 2021 Adv. Sci. 8 2102178Google Scholar

    [104]

    Yao H B, Jin K J, Yang Z, Zhang Q H, Ren W N, Xu S, Yang M W, Gu L, Guo E J, Ge C, Wang C, Xu X L, Zhang D X, Yang G Z 2021 Adv. Mater. Interfaces 8 2101499Google Scholar

    [105]

    Zhong G K, An F, Qu K, Dong Y Q, Yang Z Z, Dai L Y F, Xie S H, Huang R, Luo Z L, Li J Y 2022 Small 18 2104213Google Scholar

    [106]

    Yao M T, Li Y J, Tian B, Mao Q, Dong G H, Cheng Y X, Hou W X, Zhao Y N, Wang T, Zhao Y F, Jiang Z D, Liu M, Zhou Z Y 2020 J. Mater. Chem. C 8 17099Google Scholar

    [107]

    Lu Q W, Liu Z W, Yang Q, Cao H, Balakrishnan P, Wang Q, Cheng L, Lu Y L, Zuo J M, Zhou H, Quarterman P, Muramoto S, Grutter A J, Chen H H, Zhai X F 2022 ACS Nano 16 7580Google Scholar

    [108]

    Wang Z L 2009 Mater. Sci. Eng. R 64 33Google Scholar

    [109]

    Cao J B, Fan W, Zhou Q, Sheu E, Liu A W, Barrett C, Wu J 2010 J. Appl. Phys. 108 083538Google Scholar

    [110]

    Wang K, Cheng C, Cardona E, Guan J Y, Liu K, Wu J Q 2013 ACS Nano 7 2266Google Scholar

    [111]

    Liu K, Cheng C, Cheng Z T, Wang K, Ramesh R, Wu J Q 2012 Nano Lett. 12 6302Google Scholar

    [112]

    Dong K C, Lou S, Choe H S, Liu K, You Z, Yao J, Wu J Q 2016 Appl. Phys. Lett. 109 023504Google Scholar

    [113]

    Dong K C, Choe H S, Wang X, Liu H L, Saha B, Ko C, Deng Y, Tom K B, Lou S, Wang L T, Grigoropoulos C P, You Z, Yao J, Wu J Q 2018 Small 14 1703621Google Scholar

    [114]

    Ma H, Hou J W, Wang X W, Zhang J, Yuan Z Q, Xiao L, Wei Y, Fan S S, Jiang K L, Liu K 2017 Nano Lett. 17 421Google Scholar

    [115]

    Wang T Y, Torres D, Fernández F E, Green A J, Wang C, Sepúlveda N 2015 ACS Nano 9 4371Google Scholar

    [116]

    Tian Z, Xu B R, Hsu B, Stan L, Yang Z, Mei Y F 2018 Nano Lett. 18 3017Google Scholar

    [117]

    Liu K, Cheng C, Suh J, Tang-Kong R, Fu D Y, Lee S, Zhou J, Chua L O, Wu J Q 2014 Adv. Mater. 26 1746Google Scholar

    [118]

    Tian Z, Xu B R, Wan G C, Han X M, Di Z F, Chen Z, Mei Y F 2021 Nat. Commun. 12 509Google Scholar

    [119]

    Cheng C, Fu D Y, Liu K, Guo H, Xu S G, Ryu S G, Ho O, Zhou J, Fan W, Bao W, Salmeron M, Wang N, Grigoropoulos C P, Wu J Q 2015 Adv. Opt. Mater. 3 336Google Scholar

    [120]

    Lee S W, Cheng C, Guo H, Hippalgaonkar K, Wang K, Suh J, Liu K, Wu J Q 2013 J. Am. Chem. Soc. 135 4850Google Scholar

    [121]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322Google Scholar

    [122]

    Baik J M, Kim M H, Larson C, Yavuz C T, Stucky G D, Wodtke A M, Moskovits M 2009 Nano Lett. 9 3980Google Scholar

    [123]

    Dong G H, Li S Z, Li T, Wu H J, Nan T X, Wang X H, Liu H X, Cheng Y X, Zhou Y Q, Qu W B, Zhao Y F, Peng B, Wang Z G, Hu Z Q, Luo Z L, Ren W, Pennycook S J, Li J, Sun J, Ye Z G, Jiang Z D, Zhou Z Y, Ding X D, Min T, Liu M 2020 Adv. Mater. 32 2004477Google Scholar

    [124]

    Dong G H, Hu Y, Guo C Q, Wu H J, Liu H X, Peng R B, Xian D, Mao Q, Dong Y Q, Zhao Y N, Peng B, Wang Z G, Hu Z Q, Zhang J W, Wang X Y, Hong J W, Luo Z L, Ren W, Ye Z G, Jiang Z D, Zhou Z Y, Huang H B, Peng Y, Liu M 2022 Adv. Mater. 34 2108419Google Scholar

    [125]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [126]

    Lindemann S, Irwin J, Kim G Y, Wang B, Eom K, Wang J J, Hu J M, Chen L Q, Choi S Y, Eom C B, Rzchowski M S 2021 Sci. Adv. 7 eabh2294Google Scholar

    [127]

    Li Y, Xiang C, Chiabrera F M, Yun S, Zhang H W, Kelly D J, Dahm R T, Kirchert C K R, Cozannet T E L, Trier F, Christensen D V, Booth T J, Simonsen S B, Kadkhodazadeh S, Jespersen T S, Pryds N 2022 Adv. Mater. 34 2203187Google Scholar

    [128]

    Shen J Y, Dong Z G, Qi M Q, Zhang Y, Zhu C, Wu Z P, Li D F 2022 ACS Appl. Mater. Interfaces 14 50386Google Scholar

  • 图 1  自支撑单晶氧化物薄膜的剥离制备工艺及应用: 制备工艺包括机械剥离[17,24]和湿法牺牲层剥离[25], 应用方向包括铁电存储[26]、能量收集[19]、介电储能[27]、强关联应用[28]、磁性氧化物[29,30]和新应用方向[17,31]

    Figure 1.  Preparation methods and applications of freestanding single crystal oxide films: Synthesis methods include mechanical exfoliation[17,24] and wet etching technology[25], while applications include ferroelectric memory[26], piezoelectric energy harvester[19], dielectric energy storage[27], correlated oxide interface[28], magnetic oxide device[29,30] and novel freestanding oxide structure[17,31].

    图 2  不同湿法刻蚀材料的晶胞参数对比

    Figure 2.  Lattice parameters of materials used in wet etching technology.

    图 3  几种自支撑氧化物薄膜的剥离工艺 (a)湿法刻蚀工艺制备单晶氧化物薄膜[25]; (b)激光剥离工艺制备大面积PbZr0.52Ti0.48O3薄膜[24]; (c)借助石墨烯中间层的物理剥离工艺制备单晶氧化物薄膜[17]

    Figure 3.  Synthesis methods of freestanding oxide films: (a) Wet etching technology by Sr3Al2O6 sacrificial layer to prepare freestanding single crystal oxide film[25]; (b) laser lift-off method to prepare large area PbZr0.52Ti0.48O3 film[24]; (c) mechanical exfoliation by graphene interlayer to prepare single crystal oxide film[17].

    图 4  铁电薄膜中的拓扑结构 (a) 通量全闭合畴壁[53]; (b) 铁电涡旋畴[57]; (c) 铁电泡泡畴[52]; (d) 铁电斯格明子[55]; (e) 极化波[54]

    Figure 4.  Topology structures in ferroelectric films: (a) Flux-closure domains[53]; (b) ferroelectric vortex domains[57]; (c) nanoscale bubble domains[52]; (d) ferroelectric skyrmions[55]; (e) dipole waves[54].

    图 5  自支撑单晶氧化薄膜在铁电隧道结和晶体管中的应用 (a) BTO/LSMO柔性双层薄膜为基础的高质量柔性铁电隧道结[61]; (b) 柔性BFO铁电隧道结与神经突触示意图[63]; (c) 薄BTO层为铁电介质的单层MoS2场效应晶体管[62]; (d)柔性铁电HZO 电容器[26]

    Figure 5.  Applications of freestanding single crystal oxide films in ferroelectric tunnel junctions and field-effect transistors: (a) BTO/LSMO based flexible ferroelectric tunnel junction[61]; (b) schematic diagram of BFO ferroelectric tunnel junction based artificial synapse[63]; (c) monolayer MoS2 FET with ferroelectric thin BTO layer[62]; (d) flexible ferroelectric HZO capacitor[26].

    图 6  自支撑单晶氧化薄膜在能量收集中的应用 (a) BTO柔性纳米发电机示意图[19]; (b) BTO柔性纳米发电机测试结果图[19]; (c) PZT柔性纳米发电机结构与测试示意图[24]; (d) PZT柔性纳米发电机正向连接电输出结果图[24]; (e) PZT柔性纳米发电机点亮100个LED灯实物图[24]; (f) PZT振动能量收集器实物图[74]; (g) PZT振动能量收集器漏电流测试结果图[74]; (h) PMN-PT柔性能量收集器置于小鼠体内示意图[75]; (i) PMN-PT柔性能量收集器刺激小鼠心肌心电图[75]

    Figure 6.  Applications of freestanding single crystal oxide films in energy harvesting: (a) Schematic diagram of BTO flexible nanogenerator[19]; (b) output current of BTO flexible nanogenerator[19]; (c) structure and test diagram of PZT flexible nanogenerator[24]; (d) output voltage and current of PZT flexible nanogenerator with forward connection[24]; (e) photograph of 100 LEDs turned on by PZT flexible nanogenerator[24]; (f) photograph of PZT vibration sensor[74]; (g) leak current test of PZT vibration sensor[74]; (h) schematic diagram of PMN-PT flexible energy harvester[75]; (i) ECG of PMN-PT flexible energy harvester used as pacemaker[75].

    图 7  自支撑单晶氧化薄膜在传感方面的应用 (a) 以ZnO为牺牲层的VO2的制备工艺[76]; (b) 身体锻炼前后脉搏传感记录[76]; (c) PZT触觉传感器结构示意图[77]; PZT触觉传感器在(d)触摸和(e)弯曲下信号输出[77]

    Figure 7.  Applications of freestanding single crystal oxide films in tactile sensing: (a) Fabrication process of VO2 using ZnO as the sacrificial layer[76]; (b) recorded pulses before and after physical exercise[76]; (c) structure diagram of PZT tactile sensor[77]; (d) and (e) show output signals of touching and bending from PZT tactile sensor[77].

    图 8  自支撑单晶氧化薄膜在谐振器中的应用 (a) BTO薄膜与石墨烯组成的以压电驱动制动的谐振器实验测试示意图[81]; (b) BTO薄膜与石墨烯谐振器幅值与相位偏移图[81]; (c), (d) STO纳米鼓谐振器谐振模式结果图[82]; STO退火前(e)和后(f)中泵探头测量的截面图[83]; (g) STO非退火(黑色)和退火(浅蓝色)的皮秒超声测量示例[83]; (h)对(g)中的波进行傅里叶变换[83]

    Figure 8.  Applications of freestanding single crystal oxide films in resonators: (a) Schematic and testing diagram of BTO film and graphene based piezoelectric resonator [81]; (b) membrane magnitude and phase while sweeping the AC driving frequency [81]; (c), (d) test result of STO nano-drum resonator [82]; cross sectional illustration of the pump-probe measurement in (e) nonannealed STO and (f) annealed STO [83]; (g) examples of picosecond ultrasonic measurements on nonannealed (black) and annealed (light blue) of STO[83]; (h) Fourier transform of the waves in (g)[83].

    图 9  自支撑单晶氧化薄膜在光电传感中的应用 (a)自支撑Ga2O3薄膜的制备工艺图[84]; (b) 不同光照强度下Ga2O3光电探测器的I-V结果图[84]; (c) Ga2O3光电探测器254 nm光照下的I-T曲线[84]; (d) NiCo2O4光电探测器结构图[85]; (e) NiCo2O4光电探测器的I-V结果图[85]; (f) ZnIn2S4光电探测器示意图[86]; (g) ZnIn2S4光电探测器在黑暗和照明下测量的I-V曲线[86]; (h) ZnIn2S4薄膜制成的可穿戴设备[86]

    Figure 9.  Applications of freestanding single crystal oxide films in photoelectric sensing: (a) Schematics of the freestanding Ga2O3 films fabrication process[84]; (b) I-V curve of Ga2O3 photodetectors at different light intensity[84]; (c) I-T curve of Ga2O3 photoelectric under 254 nm illumination[84]; (d) structure diagram of NiCo2O4 photodetector[85]; (e) I-V curve of NiCo2O4 photodetector[85]; (f) schematic diagram of ZnIn2S4 photodetector[86]; (g) I-V curve of ZnIn2S4 photodetector under dark and illumination[86]; (h) photograph of wearable device made of ZnIn2S4 films[86].

    图 10  自支撑单晶氧化薄膜在介电储能中的应用 (a) NaNbO3纳米片SEM图[27]; (b) NaNbO3纳米片高分辨透射电子显微镜(HRTEM)图[27]; (c) NaNbO3纳米片/PVDF储能性能[27]; (d) 自支撑(100)取向BTO薄膜扫描透射电子显微镜(STEM)图[94]; (e) (100)取向BTO/PVDF复合材料SEM图[94]; (f) (100)取向BTO/PVDF复合材料电滞回线[94]; (g) 自支撑(111)取向BTO薄膜HRTEM图[95]; (h) (111)取向BTO/PVDF复合材料SEM图[95]; (i) (111)取向BTO/PVDF复合材料电滞回线[95]; (j) (111)取向BTO/PVDF复合材料电场分布图[95]; (k) (111)取向BTO/PVDF复合材料击穿路径图[95]

    Figure 10.  Applications of freestanding single crystal oxide films in dielectric energy storage: (a) SEM diagram of NaNbO3 nano sheet[27]; (b) high-resolution transmission electron microscopy (HRTEM) diagram of NaNbO3 nano sheet[27]; (c) energy storage performance of NaNbO3 nano chips/PVDF[27]; (d) scanning transmission electron microscopy (STEM) diagram of freestanding (100) orientated BTO films[94]; (e) (100) SEM diagram of orientated BTO/PVDF composite[94]; (f) (100) hysteresis loop of orientated BTO/PVDF composites[94]; (g) HRTEM of freestanding (111) orientated BTO films[95]; (h) (111) SEM diagram of orientated BTO/PVDF composites[95]; (i) (111) orientated BTO/PVDF composite hysteresis loop[95]; (j) (111) electric field distribution diagram of orientated BTO/PVDF composites[95]; (k) (111) breakdown path diagram of orientated BTO/PVDF composites[95].

    图 11  自支撑单晶氧化薄膜在强关联体系中的应用 (a), (b)去离子水擦除功能性SAO层前后的SAO/STO异质层[97]; (c) 滴加去离子水后SAO表面变化示意图及对应导电测试图[97]; (d) LAO/STO薄膜低温状态的超导跃迁[98]; (e) LAO/STO薄膜Dev.4的V-I曲线[98]; (f) VO2薄膜工艺的示意图[28]; (g) 自支撑态下柔性VO2薄膜实物图[28]; (h) VO2薄膜制备THz调制器[28]

    Figure 11.  Applications of freestanding single crystal oxide films in strong correlation system: (a), (b) SAO/STO heterogeneous layer before and after DI water resolving functional structure[97]; (c) DI water drop affecting SAO layer and its conductivity change[97]; (d) superconducting transitions of VO2 film at low-temperature regime[98]; (e) V-I curve of LAO/STO film Dev.4[98]; (f) schematic diagram of fabrication of VO2 film[28]; (g) photograph of flexible freestanding VO2 film[28]; (h) preparation of THz modulator by VO2 thin films[28].

    图 12  自支撑单晶磁性氧化物的器件应用与功能性研究 (a) 云母及其他衬底上生长LSMO薄膜的磁阻曲线(15 K下)[100]; (b) 10 K下自支撑LSMO薄膜的写入(W)、读取(R)与擦除(E)过程[100]; (c)自支撑LSMO/BFO薄膜交换偏置场(HEB)与矫顽场(HC)随弯曲次数变化曲线[101]; (d) Fe3O4薄膜原位弯曲的SEM照片[36]; (e), (f) LCMO薄膜的双轴拉伸(8%应变)示意图以及双向应变LCMO膜的相图[29]; (g)自支撑NZFO薄膜的弯曲示意图以及不同曲率下NZFO薄膜的铁磁共振场变化量[106]; (h)转移前后SRO薄膜面内磁阻各向异性的对比图[44]

    Figure 12.  Applications and functional research of freestanding single crystal magnetic oxide devices: (a) Magnetoresistance curves of LSMO films grown on mica and other substrates (at 15 K)[100]; (b) write (W), read (R) and erase (E) processes of freestanding LSMO films at 10 K[100]; (c) curves of exchange bias field (HEB) and coercive field (HC) of freestanding LSMO/BFO film with bending times[101]; (d) SEM photographs of in situ bending of Fe3O4 films[36]; (e), (f) schematic diagram of biaxial stretching (8% strain) of LCMO film and phase diagram[29]; (g) schematic diagram of the bending NZFO film and the change in the ferromagnetic resonance field at different curvatures[106]; (h) in-plane magnetic resistance anisotropy of SRO film before and after transfer[44].

    图 13  自支撑单晶氧化物新颖结构的应用 (a)通过焦耳热激活的微加热器执行器的侧视图[111]; (b)施加方波电压时执行器的电阻[111]; (c)电压驱动VO2弹簧伸缩以及电阻变化[117]; (d)温度门控热整流装置的扫描电子显微镜(SEM)图像[31]; (e) VO2纳米束的测量总热导率(ktot)和预期电子热导率的依赖性[31]; (f)自加热VO2微带状传感器对三种不同压力氦气脉冲的响应[121]; (g)各种BTO褶皱(平行、锯齿形和马赛克)的光学显微镜图像[123]; (h) LSMO/BTO纳米弹簧在拉伸过程中的原位SEM照片以及机械力与位移的关系[124]

    Figure 13.  Applications of novel freestanding single crystal oxides structures: (a) Side view of a microheater actuator activated by Joule heat[111]; (b) the resistance of the actuator when a square wave voltage is applied[111]; (c) the voltage-driven deformation of the VO2 spring, accompanied by a change in resistance[117]; (d) SEM of a temperature-gated thermal rectifier device consisting of two floating pads bridged by a VO2 nanobeam[31]; (e) dependence of measured total thermal conductivity (ktot) and expected electron thermal conductivity nanobeams[31]; (f) response of self-heating VO2 microstrip sensors to helium pulses at three different pressures[121]; (g) light microscopic images of various BTO wrinkles (parallel, zigzag, and mosaic) at a scale of 20 μm[123]; (h) in situ SEM of LSMO/BTO nanospring during stretching and mechanical force function determined by displacement[124].

    图 14  自支撑单晶氧化物薄膜的堆叠整合 (a) CFO/PMN-PT膜异质结构的横截面TEM图像[17]; (b) 由交流磁场强度诱导的PMN-PT(δVME)两端的感应电压[17]; (c) 在室温下测量的CFO膜、YIG膜和CFO/YIG异质结构的面外磁滞回曲线[17]; (d) 扭曲角为45°和100°的CGO/CGO双层与STO/STO双层薄膜的光学显微镜图像[127]; (e) 10°扭转角堆叠的STO/STO界面的原子分辨率高角环形暗场扫描透射(HAADF-STEM)图像[127]; (f) STO/STO异质结氧离子的示踪扩散系数(D*)与扭转角的关系[127]; (g) 硅片上以24°扭转角堆叠STO膜的光学图像与示意图[128]; (h) tBL-STO薄膜的莫尔条纹HRTEM图像和快速傅里叶变换晶格分析[128]

    Figure 14.  Stacking and twisting of freestanding single crystal oxide films: (a) Cross-sectional TEM image of the CFO/PMN-PT heterostructure[17]; (b) the induced voltage across the PMN-PT (δVME) induced by the AC magnetic field[17]; (c) out-of-plane magnetization curves of CFO, YIG, and CFO/YIG heterostructures at room temperature[17]; (d) optical microscope images of CGO/CGO bilayer and STO/STO bilayer films with a twist angle of 45° and 100°[127]; (e) atomic resolution High-Angle annular dark-field STEM image of STO/STO interface stacked at 10° twist angle[127]; (f) the dependence of oxygen ions tracer diffusion coefficient (D*) and twist angle of STO/STO heterostructure[127]; (g) optical images and schematics of STO films stacked at a 24° twist angle on silicon wafers[128]; (h) HRTEM images of moiré stripes of tBL-STO film analysis and the corresponding fast Fourier transformed results[128]

    表 1  铁电存储器材料及性能参数比较

    Table 1.  Comparison of ferroelectric films in information storage devices.

    存储器件材料体系开关电压/V开关比保持特性/min铁电功能层厚度/nm柔性文献
    FTJsPVDF+2/–23—102.2—4.4[67]
    Pt/BTO/LSMO+2/–331203.6[61]
    Pt/PZT/PEDOT:PSS+3.5/–3104.8[62]
    Pt/PZT/SRO/mica+6/–62.4—10835[68]
    Au/Cu/BTO/LSMO/BTO/Si+3/–2100302.8[69]
    Fe FETMoS2/BTO/Au/Ti/SiO2/Si+50/–501048[65]
    Pt/ZnO/PZT/SRO/CFO/mica+6/–61.4×104180[70]
    DownLoad: CSV

    表 2  压电能量收集器件的性能比较

    Table 2.  Comparison of piezoelectric energy harvesting devices.

    压电材料开路电压/V短路电流/μA电流密度/(μA·cm–2)功率密度/(μW·cm–3)文献
    PZT film/PET2001.515017500[24]
    PMN-PT film/PET8.2145[75]
    BTO film/PU/Plastic10.0260.197000[19]
    TOS-BTO Nanoparticles(Nps) /PVDF2015.6[78]
    PMMA@BTO Nanowires(Nws)/PVDF-TrFE12.61.30.68[79]
    BTO@HBP@PMMA Nws/PVDF3.40.32[80]
    DownLoad: CSV
  • [1]

    Yao G, Kang L, Li J, Long Y, Wei H, Ferreira C A, Jeffery J J, Lin Y, Cai W B, Wang X D 2018 Nat. Commun. 9 5349Google Scholar

    [2]

    Kohlstedt H, Mustafa Y, Gerber A, Petraru A, Fitsilis M, Meyer R, Böttger U, Waser R 2005 Microelectron. Eng. 80 296Google Scholar

    [3]

    Kim J, Son D, Lee M, Song C Y, Song J K, Koo J H, Lee D J, Shim H J, Kim J H, Lee M, Hyeon T, Kim D H 2016 Sci. Adv. 2 e1501101Google Scholar

    [4]

    Long Y, Wei H, Li J, Yao G, Yu B, Ni D L, Gibson A L, Lan X L, Jiang Y D, Cai W B, Wang X D 2018 ACS Nano 12 12533Google Scholar

    [5]

    Baek S H, Park J, Kim D M, Aksyuk V A, Das R R, Bu S D, Felker D A, Lettieri J, Vaithyanathan V, Bharadwaja S S, Bassiri-Gharb N, Chen Y B, Sun H P, Folkman C M, Jang H W, Kreft D J, Streiffer S K, Ramesh R, Pan X Q, Trolier-Mckinstry S, Schlom D G, Rzchowski M S, Blick R H, Eom C B 2011 Science 334 958Google Scholar

    [6]

    郭庆磊, 张苗, 狄增峰, 黄高山, 梅永丰 2016 中国科学: 物理学 力学 天文学 46 97Google Scholar

    Guo Q L, Zhang M, Di Z F, Huang G S, Mei Y F 2016 Sci. China Phys. Mech. 46 97Google Scholar

    [7]

    Elangovan H, Barzilay M, Seremi S, Cohen N, Jiang Y Z, Martin L W, Ivry Y 2020 ACS Nano 14 5053Google Scholar

    [8]

    Bakaul S R, Kim J, Hong S, Cherukara M J, Zhou T, Stan L, Serrao C R, Salahuddin S, Petford-Long A K, Fong D D, Holt M V 2020 Adv. Mater. 32 1907036Google Scholar

    [9]

    Shi Q W, Parsonnet E, Cheng X X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X X, Chang X, Zhang H R, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [10]

    Hou W X, Yao M T, Qiu R B, Wang Z C, Zhou Z Y, Shi K Q, Pan J Y, Liu M, Hu J F 2021 J. Alloy. Compd. 887 161470Google Scholar

    [11]

    Salles P, Guzmán R, Zanders D, Quintana A, Fina I, Sánchez F, Zhou W, Devi A, Coll M 2022 ACS Appl. Mater. Interfaces 14 12845Google Scholar

    [12]

    Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar

    [13]

    Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C M, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547Google Scholar

    [14]

    Singh P, Swartz A, Lu D, Hong S S, Lee K, Marshall A F, Nishio K, Hikita Y, Hwang H Y 2019 ACS Appl. Electron. Mater. 1 1269Google Scholar

    [15]

    Wong W S, Sands T, Cheung N W 1998 Appl. Phys. Lett. 72 599Google Scholar

    [16]

    Chiabrera F M, Yun S, Li Y, Dahm R T, Zhang H W, Kirchert C K R, Christensen D V, Trier F, Jespersen T S, Pryds N 2022 Annalen der Physik 534 2200084Google Scholar

    [17]

    Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar

    [18]

    王倩, 高能, 张天垚, 姚光, 潘泰松, 高敏, 林媛 2020 材料导报 34 01014Google Scholar

    Wang Q, Gao N, Zhang T Y, Yao G, Pan T S, Gao M, Lin Y 2020 Mater. Rep. 34 01014Google Scholar

    [19]

    Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939Google Scholar

    [20]

    Yao G, Ji Y D, Liang W Z, Gao M, Zheng S L, Wang Y, Li H D, Wang Z M, Chen C L, Lin Y 2017 Nanoscale 9 3068Google Scholar

    [21]

    Yao G, Gao M, Ji Y D, Liang W Z, Gao L, Zheng S L, Wang Y, Pang B, Chen Y B, Zeng H Z, Li H D, Wang Z M, Liu J S, Chen C L, Lin Y 2016 Sci. Rep. 6 34683Google Scholar

    [22]

    Lin Y, Feng D Y, Gao M, Ji Y D, Jin L B, Yao G, Liao F Y, Zhang Y, Chen C L 2015 J. Mater. Chem. C 3 3438Google Scholar

    [23]

    Hilton D J, Prasankumar R P, Fourmaux S, Cavalleri A, Brassard D, El Khakani M A, Kieffer J C, Taylor A J, Averitt R D 2007 Phys. Rev. Lett. 99 226401Google Scholar

    [24]

    Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514Google Scholar

    [25]

    Ji D X, Cai S H, Paudel T R, Sun H Y, Zhang C C, Han L, Wei Y F, Zang Y P, Gu M, Zhang Y, Gao W P, Huyan H X, Guo W, Wu D, Gu Z B, Tsymbal E Y, Wang P, Nie Y F, Pan X Q 2019 Nature 570 87Google Scholar

    [26]

    Zhong H, Li M Q, Zhang Q H, Yang L H, He R, Liu F, Liu Z H, Li G, Sun Q C, Xie D G, Meng F Q, Li Q, He M, Guo E J, Wang C, Zhong Z C, Wang X Q, Gu L, Yang G Z, Jin K J, Gao P, Ge C 2022 Adv. Mater. 34 2109889Google Scholar

    [27]

    Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B 2017 Nano Energy 40 587Google Scholar

    [28]

    Ma H, Xiao X, Wang Y, Sun Y F, Wang B L, Gao X Y, Wang E Z, Jiang K L, Liu K, Zhang X P 2021 Sci. Adv. 7 eabk3438Google Scholar

    [29]

    Chen Z Y, Wang B Y, Goodge B H, Lu D, Hong S S, Li D F, Kourkoutis L F, Hikita Y, Hwang H Y 2019 Phys. Rev. Mater. 3 060801Google Scholar

    [30]

    Lee D K, Park Y, Sim H, Park J, Kim Y, Kim G Y, Eom C B, Choi S Y, Son J 2021 Nat. Commun. 12 5019Google Scholar

    [31]

    Lee S, Hippalgaonkar K, Yang F, Hong J W, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J Q 2017 Science 355 371Google Scholar

    [32]

    Zhang Y, Ma C R, Lu X L, Liu M 2019 Mater. Horiz. 6 911Google Scholar

    [33]

    Han L, Fang Y H, Zhao Y Q, Zang Y P, Gu Z B, Nie Y F, Pan X Q 2020 Adv. Mater. Interfaces 7 1901604Google Scholar

    [34]

    Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, . Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [35]

    Peng B, Peng R-C, Zhang Y-Q, Dong G H, Zhou Z Y, Zhou Y, Li T, Liu Z J, Luo Z L, Wang S H, Xia Y, Qiu R B, Cheng X X, Xue F, Hu Z Q, Ren W, Ye Z G, Chen L Q, Shan Z W, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [36]

    An F, Qu K, Zhong G, Dong Y Q, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z L, Gao X S, Xie S H, Gao P, Li J Y 2020 Adv. Funct. Mater. 30 2003495Google Scholar

    [37]

    Pesquera D, Khestanova E, Ghidini M, Zhang S, Rooney A P, Maccherozzi F, Riego P, Farokhipoor S, Kim J, Moya X, Vickers M E, Stelmashenko N A, Haigh S J, Dhesi S S, Mathur N D 2020 Nat. Commun. 11 3190Google Scholar

    [38]

    Hong S S, Gu M Q, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M, Hwang H Y 2020 Science 368 71Google Scholar

    [39]

    Qi Y, Jafferis N T, Lyons K J, Lee C M, Ahmad H, Mcalpine M C 2010 Nano Lett. 10 524Google Scholar

    [40]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, Mcalpine M C 2011 Nano Lett. 11 1331Google Scholar

    [41]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H C, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 npj Flex. Electron. 6 9Google Scholar

    [42]

    Bourlier Y, Bérini B, Frégnaux M, Fouchet A, Aureau D, Dumont Y 2020 ACS Appl. Mater. Interfaces 12 8466Google Scholar

    [43]

    Chang Y W, Wu P C, Yi J B, Liu Y C, Chou Y, Chou Y C, Yang J C 2020 Nanoscale Res. Lett. 15 172Google Scholar

    [44]

    Peng H N, Lu N P, Yang S Z, Lyu Y J, Liu Z W, Bu Y F, Shen S C, Li M Q, Li Z L, Gao L, Lu S C, Wang M, Cao H, Zhou H, Gao P, Chen H H, Yu P 2022 Adv. Funct. Mater. 32 2111907Google Scholar

    [45]

    Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042Google Scholar

    [46]

    Zhang Y, Shen L K, Liu M, Li X, Lu X L, Lu L, Ma C R, Chen A P, Huang C W, Chen L, Jia C L 2017 ACS Nano 11 8002Google Scholar

    [47]

    Guo M, Yang C, Gao D, Li Q, Zhang A, Feng J, Yang H, Tao R, Fan Z, Zeng M, Zhou G F, Lu X B, Liu J M 2020 J. Mater. Sci. Technol. 44 42Google Scholar

    [48]

    Lu L, Dai Y Z, Du H C, Liu M, Wu J Y, Zhang Y, Liang Z S, Raza S, Wang D W, Jia C L 2020 Adv. Mater. Interfaces 7 1901265Google Scholar

    [49]

    Liu J D, Feng Y, Tang R J, Zhao R, Gao J, Shi D N, Yang H 2018 Adv. Electron. Mater. 4 1700522Google Scholar

    [50]

    Lee S A, Hwang J Y, Kim E S, Kim S W, Choi W S 2017 ACS Appl. Mater. Interfaces 9 3246Google Scholar

    [51]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [52]

    Zhang Q, Xie L, Liu G Q, Prokhorenko S, Nahas Y, Pan X Q, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [53]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [54]

    Lu L, Nahas Y, Liu M, Du H C, Jiang Z J, Ren S P, Wang D W, Jin L, Prokhorenko S, Jia C L, Bellaiche L 2018 Phys. Rev. Lett. 120 177601Google Scholar

    [55]

    Das S, Tang Y L, Hong Z, Gonçalves M P, Mccarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [56]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [57]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [58]

    Yadav A K, Nguyen K X, Hong Z J, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C M, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [59]

    Han L, Addiego C, Prokhorenko S, Wang M Y, Fu H Y, Nahas Y, Yan X X, Cai S H, Wei T Q, Fang Y H, Liu H Z, Ji D X, Guo W, Gu Z B, Yang Y R, Wang P, Bellaiche L, Chen Y F, Wu D, Nie Y F, Pan X Q 2022 Nature 603 63Google Scholar

    [60]

    Sun H Y, Wang J R, Wang Y S, Guo C Q, Gu J H, Mao W, Yang J F, Liu Y W, Zhang T T, Gao T Y, Fu H Y, Zhang T J, Hao Y F, Gu Z B, Wang P, Huang H B, Nie Y F 2022 Nat. Commun. 13 4332Google Scholar

    [61]

    Luo Z D, Peters J J P, Sanchez A M, Alexe M 2019 ACS Appl. Mater. Interfaces 11 23313Google Scholar

    [62]

    Li R N, Xu Y M, Song J M, Wang P, Li C, Wu D 2020 Appl. Phys. Lett. 116 222904Google Scholar

    [63]

    Zhao Z, Abdelsamie A, Guo R, Shi S, Zhao J H, Lin W N, Sun K X, Wang J W, Wang J L, Yan X B, Chen J S 2022 Nano Res. 15 2682Google Scholar

    [64]

    Li H L, Wang R P, Han S T, Zhou Y 2020 Polym. Int. 69 533Google Scholar

    [65]

    Puebla S, Pucher T, Rouco V, Sanchez-Santolino G, Xie Y, Zamora V, Cuellar F A, Mompean F J, Leon C, Island J O, Garcia-Hernandez M, Santamaria J, Munuera C, Castellanos-Gomez A 2022 Nano. Lett. 22 7457Google Scholar

    [66]

    Mulaosmanovic H, Breyer E T, Dünkel S, Beyer S, Mikolajick T, Slesazeck S 2021 Nanotechnology 32 502002Google Scholar

    [67]

    Tian B B, Wang J L, Fusil S, Liu Y, Zhao X L, Sun S, Shen H, Lin T, Sun J L, Duan C G, Bibes M, Barthelemy A, Dkhil B, Garcia V, Meng X J, Chu J H 2016 Nat. Commun. 7 11502Google Scholar

    [68]

    Hou P F, Yang K X, Ni K K, Wang J B, Zhong X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C. 6 5193Google Scholar

    [69]

    Lu D, Crossley S, Xu R J, Hikita Y, Hwang H Y 2019 Nano Lett. 19 3999Google Scholar

    [70]

    Ren C L, Zhong G K, Xiao Q, Tan C B, Feng M, Zhong X L, An F, Wang J B, Zi M F, Tang M K, Tang Y, Jia T T, Li J Y 2020 Adv. Funct. Mater. 30 1906131Google Scholar

    [71]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [72]

    Wang Z L, Jiang T, Xu L 2017 Nano Energy 39 9Google Scholar

    [73]

    毕亚琪 2020 硕士学位论文 (北京: 北京交通大学)

    Bi Y Q 2020 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [74]

    Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S H 2019 Nano Energy 55 182Google Scholar

    [75]

    Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880Google Scholar

    [76]

    Li X X, Yin Z G, Zhang X W, Wang Y, Wang D G, Gao M L, Meng J H, Wu J L, You J B 2019 Adv. Mater. Technol. 4 1800695Google Scholar

    [77]

    Noh M S, Kim S, Hwang D K, Kang C Y 2017 Sensors Actuat. A-Phys. 261 288Google Scholar

    [78]

    Li H, Lim S 2022 Nanomaterials 12 2910Google Scholar

    [79]

    Shi K M, Chai B, Zou H Y, Shen P Y, Sun B, Jiang P K, Shi Z W, Huang X Y 2021 Nano Energy 80 105515Google Scholar

    [80]

    Zhao B B, Chen Z X, Cheng Z F, Wang S, Yu T, Yang W D, Li Y 2022 ACS Appl. Nano Mater. 5 8417Google Scholar

    [81]

    Lee M, Renshof J R, Van Zeggeren K J, Houmes M J A, Lesne E, Šiškins M, Van Thiel T C, Guis R H, Van Blankenstein M R, Verbiest G J, Caviglia A D, Van Der Zant H S J, Steeneken P G 2022 Adv. Mater. 34 2204630Google Scholar

    [82]

    Davidovikj D, Groenendijk D J, Monteiro A M R V L, Dijkhoff A, Afanasiev D, Šiškins M, Lee M, Huang Y, Van Heumen E, Van Der Zant H S J, Caviglia A D, Steeneken P G 2020 Commun. Phys. 3 163Google Scholar

    [83]

    Lee M, Robin M P, Guis R H, Filippozzi U, Shin D H, Van Thiel T C, Paardekooper S P, Renshof J R, Van Der Zant H S J, Caviglia A D, Verbiest G J, Steeneken P G 2022 Nano Lett. 22 1475Google Scholar

    [84]

    Wang X, Wu Z P, Cui W, Zhi Y S, Li Z P, Li P G, Guo D Y, Tang W H 2019 Chin. Phys. B 28 017305Google Scholar

    [85]

    Hu L F, Wu L M, Liao M Y, Fang X S 2011 Adv. Mater. 23 1988Google Scholar

    [86]

    Valdman L, Mazánek V, Marvan P, Serra M, Arenal R, Sofer Z 2021 Adv. Opt. Mater. 9 2100845Google Scholar

    [87]

    Wang G, Lu Z L, Li Y, Li L H, Ji H F, Feteira A, Zhou D, Wang D W, Zhang S J, Reaney I M 2021 Chem. Rev. 121 6124Google Scholar

    [88]

    Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [89]

    Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M 2013 Adv. Mater. 25 1734Google Scholar

    [90]

    Li Q, Liu F H, Yang T N, Gadinski M R, Zhang G Z, Chen L Q, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995Google Scholar

    [91]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q Q 2019 Nano Energy 56 138Google Scholar

    [92]

    Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar

    [93]

    Shen X, Zheng Q B, Kim J K 2021 Prog. Mater. Sci. 115 100708Google Scholar

    [94]

    Wang T, Peng R C, Dong G H, Du Y J, Zhao S S, Zhao Y N, Zhou C, Yang S, Shi K Q, Zhou Z Y, Liu M, Pan J Y 2022 ACS Appl. Mater. Interfaces 14 17849Google Scholar

    [95]

    Wang T, Peng R C, Peng W, Dong G H, Zhou C, Yang S, Zhou Z Y, Liu M 2022 Adv. Funct. Mater. 32 2108496Google Scholar

    [96]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [97]

    Han K, Hu K G, Li X, Huang K, Huang Z, Zeng S W, Qi D C, Ye C, Yang J, Xu H, Ariando A, Yi J B, Lü W M, Yan S S, Wang X R 2019 Sci. Adv. 5 eaaw7286Google Scholar

    [98]

    Erlandsen R, Dahm R T, Trier F, Scuderi M, Di Gennaro E, Sambri A, Reffeldt Kirchert C K, Pryds N, Granozio F M, Jespersen T S 2022 Nano Lett. 22 4758Google Scholar

    [99]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [100]

    Zhang C, Ding S S, Qiao K M, Li J, Li Z, Yin Z, Sun J R, Wang J, Zhao T Y, Hu F X, Shen B G 2021 ACS Appl. Mater. Interfaces 13 28442Google Scholar

    [101]

    Jin C, Zhu Y M, Han W Q, Liu Q, Hu S X, Ji Y J, Xu Z D, Hu S B, Ye M, Chen L 2020 Appl. Phys. Lett. 117 252902Google Scholar

    [102]

    Huang J J, Zhang D, Liu J C, Wang H Y 2022 Mater. Res. Lett. 10 287Google Scholar

    [103]

    Jin C, Zhu Y M, Li X W, An F, Han W Q, Liu Q, Hu S X, Ji Y J, Xu Z D, Hu S B, Ye M, Zhong G K, Gu M, Chen L 2021 Adv. Sci. 8 2102178Google Scholar

    [104]

    Yao H B, Jin K J, Yang Z, Zhang Q H, Ren W N, Xu S, Yang M W, Gu L, Guo E J, Ge C, Wang C, Xu X L, Zhang D X, Yang G Z 2021 Adv. Mater. Interfaces 8 2101499Google Scholar

    [105]

    Zhong G K, An F, Qu K, Dong Y Q, Yang Z Z, Dai L Y F, Xie S H, Huang R, Luo Z L, Li J Y 2022 Small 18 2104213Google Scholar

    [106]

    Yao M T, Li Y J, Tian B, Mao Q, Dong G H, Cheng Y X, Hou W X, Zhao Y N, Wang T, Zhao Y F, Jiang Z D, Liu M, Zhou Z Y 2020 J. Mater. Chem. C 8 17099Google Scholar

    [107]

    Lu Q W, Liu Z W, Yang Q, Cao H, Balakrishnan P, Wang Q, Cheng L, Lu Y L, Zuo J M, Zhou H, Quarterman P, Muramoto S, Grutter A J, Chen H H, Zhai X F 2022 ACS Nano 16 7580Google Scholar

    [108]

    Wang Z L 2009 Mater. Sci. Eng. R 64 33Google Scholar

    [109]

    Cao J B, Fan W, Zhou Q, Sheu E, Liu A W, Barrett C, Wu J 2010 J. Appl. Phys. 108 083538Google Scholar

    [110]

    Wang K, Cheng C, Cardona E, Guan J Y, Liu K, Wu J Q 2013 ACS Nano 7 2266Google Scholar

    [111]

    Liu K, Cheng C, Cheng Z T, Wang K, Ramesh R, Wu J Q 2012 Nano Lett. 12 6302Google Scholar

    [112]

    Dong K C, Lou S, Choe H S, Liu K, You Z, Yao J, Wu J Q 2016 Appl. Phys. Lett. 109 023504Google Scholar

    [113]

    Dong K C, Choe H S, Wang X, Liu H L, Saha B, Ko C, Deng Y, Tom K B, Lou S, Wang L T, Grigoropoulos C P, You Z, Yao J, Wu J Q 2018 Small 14 1703621Google Scholar

    [114]

    Ma H, Hou J W, Wang X W, Zhang J, Yuan Z Q, Xiao L, Wei Y, Fan S S, Jiang K L, Liu K 2017 Nano Lett. 17 421Google Scholar

    [115]

    Wang T Y, Torres D, Fernández F E, Green A J, Wang C, Sepúlveda N 2015 ACS Nano 9 4371Google Scholar

    [116]

    Tian Z, Xu B R, Hsu B, Stan L, Yang Z, Mei Y F 2018 Nano Lett. 18 3017Google Scholar

    [117]

    Liu K, Cheng C, Suh J, Tang-Kong R, Fu D Y, Lee S, Zhou J, Chua L O, Wu J Q 2014 Adv. Mater. 26 1746Google Scholar

    [118]

    Tian Z, Xu B R, Wan G C, Han X M, Di Z F, Chen Z, Mei Y F 2021 Nat. Commun. 12 509Google Scholar

    [119]

    Cheng C, Fu D Y, Liu K, Guo H, Xu S G, Ryu S G, Ho O, Zhou J, Fan W, Bao W, Salmeron M, Wang N, Grigoropoulos C P, Wu J Q 2015 Adv. Opt. Mater. 3 336Google Scholar

    [120]

    Lee S W, Cheng C, Guo H, Hippalgaonkar K, Wang K, Suh J, Liu K, Wu J Q 2013 J. Am. Chem. Soc. 135 4850Google Scholar

    [121]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322Google Scholar

    [122]

    Baik J M, Kim M H, Larson C, Yavuz C T, Stucky G D, Wodtke A M, Moskovits M 2009 Nano Lett. 9 3980Google Scholar

    [123]

    Dong G H, Li S Z, Li T, Wu H J, Nan T X, Wang X H, Liu H X, Cheng Y X, Zhou Y Q, Qu W B, Zhao Y F, Peng B, Wang Z G, Hu Z Q, Luo Z L, Ren W, Pennycook S J, Li J, Sun J, Ye Z G, Jiang Z D, Zhou Z Y, Ding X D, Min T, Liu M 2020 Adv. Mater. 32 2004477Google Scholar

    [124]

    Dong G H, Hu Y, Guo C Q, Wu H J, Liu H X, Peng R B, Xian D, Mao Q, Dong Y Q, Zhao Y N, Peng B, Wang Z G, Hu Z Q, Zhang J W, Wang X Y, Hong J W, Luo Z L, Ren W, Ye Z G, Jiang Z D, Zhou Z Y, Huang H B, Peng Y, Liu M 2022 Adv. Mater. 34 2108419Google Scholar

    [125]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [126]

    Lindemann S, Irwin J, Kim G Y, Wang B, Eom K, Wang J J, Hu J M, Chen L Q, Choi S Y, Eom C B, Rzchowski M S 2021 Sci. Adv. 7 eabh2294Google Scholar

    [127]

    Li Y, Xiang C, Chiabrera F M, Yun S, Zhang H W, Kelly D J, Dahm R T, Kirchert C K R, Cozannet T E L, Trier F, Christensen D V, Booth T J, Simonsen S B, Kadkhodazadeh S, Jespersen T S, Pryds N 2022 Adv. Mater. 34 2203187Google Scholar

    [128]

    Shen J Y, Dong Z G, Qi M Q, Zhang Y, Zhu C, Wu Z P, Li D F 2022 ACS Appl. Mater. Interfaces 14 50386Google Scholar

  • [1] Preface to the special topic: Novel physical properties of functional oxide thin films. Acta Physica Sinica, 2023, 72(9): 090101. doi: 10.7498/aps.72.090101
    [2] Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying. Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film. Acta Physica Sinica, 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [3] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [4] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [5] Liu Hu-Lin, Wang Xing, Tian Jin-Shou, Sai Xiao-Feng, Wei Yong-Lin, Wen Wen-Long, Wang Jun-Feng, Xu Xiang-Yan, Wang Chao, Lu Yu, He Kai, Chen Ping, Xin Li-Wei. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection. Acta Physica Sinica, 2018, 67(1): 014209. doi: 10.7498/aps.67.20171729
    [6] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [7] Zhai Xiao-Fang, Yun Yu, Meng De-Chao, Cui Zhang-Zhang, Huang Hao-Liang, Wang Jian-Lin, Lu Ya-Lin. Research progress of multiferroicity in Bi-layered oxide single-crystalline thin films. Acta Physica Sinica, 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [8] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] Zhang Li-Rong, Ma Xue-Xue, Wang Chun-Fu, Li Guan-Ming, Xia Xing-Heng, Luo Dong-Xiang, Wu Wei-Jing, Xu Miao, Wang Lei, Peng Jun-Biao. High speed gate driver circuit basd on metal oxide thin film transistors. Acta Physica Sinica, 2016, 65(2): 028501. doi: 10.7498/aps.65.028501
    [11] Li Zhao-Guo, Meng Ling-Biao, Zhou Min-Jie, Diao Kai-Di, Yi Yong, Zhu Xiao-Li, Wu Wei-Dong, Zhang Ji-Cheng. Fabrication of self-standing binary Gabor zone plate and its single order diffraction. Acta Physica Sinica, 2016, 65(12): 124207. doi: 10.7498/aps.65.124207
    [12] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [13] Feng Xue, Lu Bing-Wei, Wu Jian, Lin Yuan, Song Ji-Zhou, Song Guo-Feng, Huang Yong-Gang. Review on stretchable and flexible inorganic electronics. Acta Physica Sinica, 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [14] Liu Zhao-Jun, Meng Zhi-Guo, Zhao Sun-Yun, Kwok Hoi Sing, Wu Chun-Ya, Xiong Shao-Zhen. Crystallized poly-silicon thin film laterally induced by the Ni/Si oxide source. Acta Physica Sinica, 2010, 59(4): 2775-2782. doi: 10.7498/aps.59.2775
    [15] Fu Xiao-Nan, Li Xin-Jian. Preparation, structural characterization and nitrogen adsorption properties of a self-supported nanostructured gold film. Acta Physica Sinica, 2005, 54(11): 5257-5261. doi: 10.7498/aps.54.5257
    [16] Chen Ying-Fei, Peng Wei, Li Jie, Chen Ke, Zhu Xiao-Hong, Wang Ping, Zeng Guang, Zheng Dong-Ning, Li Lin. In-situ monitoring of the growth of oxide thin films in PLD using high-pressure reflection high energy electron diffraction. Acta Physica Sinica, 2003, 52(10): 2601-2606. doi: 10.7498/aps.52.2601
    [17] WANG JIAN-PING, XU NA-JUN, ZHANG TING-QING, TANG HUA-LIAN, LIU JIA-LU, LIU CHUAN -YANG, YAO YU-JUAN, PENG HONG-LUN, HE BAO-PING, ZHANG ZHENG-XUAN. TEMPERATURE EFFECTS OF γ-IRRADIATED METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT-TRAN SISTOR. Acta Physica Sinica, 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
    [18] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [19] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (I)——ESTABLISHMENT OF THE MODEL. Acta Physica Sinica, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
    [20] KANG JIN-FENG, CHEN XIN, WANG YOU-XIANG, HAN RU-QI, XIONG GUANG-CHENG, LIAN GUI-JUN, LI JIE, WU SI-CHENG. DIFFERENT INTERDIFFUSION CHARACTERISTICS BETWEEN Ag AND Al/YBa_2Cu_3O_(7-x) CONTACT INTERFACE. Acta Physica Sinica, 1995, 44(11): 1831-1838. doi: 10.7498/aps.44.1831
Metrics
  • Abstract views:  9083
  • PDF Downloads:  437
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2022
  • Accepted Date:  17 January 2023
  • Available Online:  17 February 2023
  • Published Online:  05 May 2023

/

返回文章
返回