Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rate optimization of atomic layer etching process of silicon

Bai Sheng-Bo Chen Zhi-Hua Zhang Huan-Hao Chen Gao-Jie Cao Shi-Cheng Zhang Sheng-Bo

Citation:

Rate optimization of atomic layer etching process of silicon

Bai Sheng-Bo, Chen Zhi-Hua, Zhang Huan-Hao, Chen Gao-Jie, Cao Shi-Cheng, Zhang Sheng-Bo
PDF
HTML
Get Citation
  • With the shrink of critical dimensions of semiconductor devices to a few nanometers, atomic layer etching (ALE) has become an important technique to achieve single-atom resolution. The ALE can divide plasma etching into two self-limiting reaction processes: passivation process and etching process, allowing for the sequential removal of material atomic layer by layer. Therefore, it encounters the problem of low etch rate. In this work, the variation in surface substance coverage during the passivation process and the etching process are investigated numerically to optimize both the passivation duration and the etching duration. A coupled model integrating a two-dimensional inductively coupled plasma discharge chamber model, a one-dimensional sheath model, and a three-dimensional etching trench model is developed and used to investigate the optimal time for one single cycle ALE of silicon through the use of Ar/Cl2 gases under the condition of Ar inductively coupled plasma discharge. The results indicate that during the passivation stage, the surface coverage of SiCl and SiCl2 initially increase with time going by and then decrease, while the surface coverage of SiCl3 continuously increases, and eventually, the surface coverage of these three species stabilize. When the surface is predominantly covered by SiCl2, it is the optimal time to trigger the etching process, which induces a relatively favorable surface state and a relatively short etching time. Comparing with typical ALE etching techniques, the time of our optimal ALE single cycle is shortened by about 33.89%. The ALE cycle time (etching rate) exhibits a linear relationship with the aspect ratio. Additionally, the duration of the passivation process and etching process increase linearly with the aspect ratio or etch depth increasing. Moreover, as the etch depth increases, the effect of the passivation process on the ALE rate becomes more significant than that of the etching process.
    [1]

    Jung J, Kim K 2023 Materials 16 3611Google Scholar

    [2]

    Hao Q, Kim P, Nam S K, Kang S Y, Donnelly V M 2023 J. Vac. Sci. Technol., A 41 032605Google Scholar

    [3]

    Eliceiri M, Rho Y, Li R, Grigoropoulos C P 2023 J. Vac. Sci. Technol., A 41 022602Google Scholar

    [4]

    Ma X, Zhang S, Dai Z, Wang Y 2017 Plasma Sci. Technol. 19 085502Google Scholar

    [5]

    Huard C M, Zhang Y, Sriraman S, Paterson A, Kanarik K J, Kushner M J 2017 J. Vac. Sci. Technol., A 35 031306Google Scholar

    [6]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol. , A 8 1844Google Scholar

    [7]

    Matsuura T, Murota J, Sawada Y, Ohmi T 1993 Appl. Phys. Lett. 63 2803Google Scholar

    [8]

    Imai S, Haga T, Matsuzaki O, Hattori T, Matsumura M 1995 Jpn. J. Appl. Phys., Part 1 34 5049Google Scholar

    [9]

    Kim J K, Cho S I, Lee S H, Kim C K, Min K S, Kang S H, Yeom G Y 2013 J. Vac. Sci. Technol., A 31 061310Google Scholar

    [10]

    Song E J, Kim J H, Kwon J D, Kwon S H, Ahn J H 2018 Jpn. J. Appl. Phys. 57 106505Google Scholar

    [11]

    Goodyear A, Cooke M 2017 J. Vac. Sci. Technol., A 35 01A105Google Scholar

    [12]

    Yoon M Y, Yeom H J, Kim J H, Chegal W, Cho Y J, Kwon D C, Jeong J R, Lee H C 2021 Phys. Plasmas 28 063504Google Scholar

    [13]

    Nakamura S, Tanide A, Kimura T, Nadahara S, Ishikawa K, Oda O, Hori M 2023 J. Appl. Phys. 133 043302Google Scholar

    [14]

    Ranjan A, Wang M, Sherpa S D, Rastogi V, Koshiishi A, Ventzek P L G 2016 J. Vac. Sci. Technol., A 34 031304Google Scholar

    [15]

    Agarwal A, Kushner M J 2009 J. Vac. Sci. Technol., A 27 37Google Scholar

    [16]

    Huard C M, Lanham S J, Kushner M J 2018 J. Phys. D: Appl. Phys. 51 155201Google Scholar

    [17]

    贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 物理学报 60 045209Google Scholar

    He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. 60 045209Google Scholar

    [18]

    Vella J R, Humbird D, Graves D B 2022 J. Vac. Sci. Technol., B 40 023205Google Scholar

    [19]

    Sui J, Zhang S, Liu Z, Yan J, Dai Z 2016 Plasma Sci. Technol. 18 666Google Scholar

    [20]

    葛婕 2014 硕士学位论文 (北京: 清华大学)

    Ge J 2014 M. S. Thesis (Beijing: Tsinghua University

    [21]

    Brezmes A O, Breitkopf C 2015 Vacuum 116 65Google Scholar

    [22]

    Liu Z L, Jing X B, Yao K L 2005 J. Phys. D: Appl. Phys. 38 1899Google Scholar

    [23]

    杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 物理学报 62 208201Google Scholar

    Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201Google Scholar

    [24]

    高扬福, 宋亦旭, 孙晓民 2014 物理学报 63 048201Google Scholar

    Gao Y F, Song Y X, Sun X M 2014 Acta Phys. Sin. 63 048201Google Scholar

    [25]

    郑树琳, 宋亦旭, 孙晓民 2013 物理学报 62 108201Google Scholar

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201Google Scholar

    [26]

    Huard C M, Zhang Y, Sriraman S, Paterson A, Kushner M J 2017 J. Vac. Sci. Technol. , A 35 05C301Google Scholar

    [27]

    Han J, Pribyl P, Gekelman W, Paterson A, Lanham S J, Qu C, Kushner M J 2019 Phys. Plasmas 26 103503Google Scholar

    [28]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

  • 图 1  ICP放电腔室模型

    Figure 1.  ICP discharge chamber model.

    图 2  一维无碰撞鞘层模型示意图

    Figure 2.  One-dimensional collisionless sheath model schematic diagram.

    图 3  Si原子层刻蚀计算域[25]

    Figure 3.  Calculation domain for Si atomic layer etching[25].

    图 4  刻蚀算法流程图

    Figure 4.  Etching algorithm flowchart.

    图 5  钝化过程中腔室内各粒子的数密度分布 (a) Ar+; (b) ${\text{Cl}}_2^ + $; (c) Cl+; (d) Cl自由基

    Figure 5.  Number density distribution of particles in the chamber during passivation process: (a) Ar+; (b) ${\text{Cl}}_2^ + $; (c) Cl+; (d) Cl radical

    图 6  刻蚀过程中腔室内Ar+离子数密度分布

    Figure 6.  Number density distribution of Ar+ ions in the chamber during etching process.

    图 7  钝化过程中Ar+, ${\text{Cl}}_2^ + $, Cl+能量分布和角度分布 (a) 能量分布; (b) 角度分布

    Figure 7.  Energy distributions and angular distributions of Ar+, ${\text{Cl}}_2^ + $ and Cl+ during the passivation process: (a) Energy distributions; (b) angular distributions.

    图 8  刻蚀过程中Ar+能量分布和角度分布 (a) 能量分布; (b) 角度分布

    Figure 8.  Energy distributions and angular distributions of Ar+ during the etching process: (a) Energy distributions; (b) angular distributions.

    图 9  AR为1的ALE刻蚀沟槽剖面与钝化物云图 (a) AR为1的刻蚀沟槽; (b) 钝化过程中, 四种表面状态的沟槽底部云图

    Figure 9.  ALE-etched trench with AR of 1 and images of passivated layer: (a) Trench profile with AR of 1; (b) images of the trench bottom showing four different surface states during passivation process.

    图 10  AR为1状态下, 钝化过程表面物质占比随时间的变化

    Figure 10.  Time evolution of surface coverage during passivation process with AR of 1.

    图 11  AR为1状态下, 不同条件下启动刻蚀后的表面物质占比随时间的变化曲线 (a) SiCl最多时启动; (b) SiCl2最多时启动; (c) SiCl3最多时启动; (d) 钝化物总和最多时启动

    Figure 11.  Time evolution of surface composition during etching initiation under different conditions with AR of 1: (a) Initiation with maximum SiCl percentage; (b) initiation with maximum SiCl2 percentage; (c) initiation with maximum SiCl3 percentage; (d) initiation with maximum accumulated passivation species percentage.

    图 12  ALE形貌(初始AR为0.5、槽宽60 nm) (a)初始沟槽; (b) 100个循环后的三维ALE沟槽

    Figure 12.  ALE profile (initial AR of 0.5, trench width of 60 nm): (a) Initial trench; (b) 3D ALE trench after 100 cycles.

    图 13  SiCl2占比最多时开始刻蚀所产生的AR与(a)原子层钝化时间、(b)刻蚀时间和(c) ALE单循环时间的变化关系

    Figure 13.  Evolution of AR with (a) passivation time, (b) etching time, (c) ALE cycle time in the case of SiCl2 dominant etching.

    表 1  Si原子层刻蚀多尺度仿真模型对比

    Table 1.  Summary of Si ALE multi-scale simulation.

    ICP
    计算模型
    IEADs
    计算模型
    ALE刻蚀
    计算模型
    研究目标 重点指标
    国外 Huard等[5,16] 采用HPEM(2D), 主要包括电磁模块、电子蒙特卡罗模块、流体动力学模块和辐射传输模块 PCMCM
    (1D)粒子网格算法
    元胞法耦合蒙特卡罗法(3D) 统计表面物质占比; 计算ALE协同率和每循环刻蚀深度 非理想的通量和IEADs对ALE的影响; 离子分布不均匀性对ALE的影响
    Agarwal和Kushner[15] 元胞法耦合蒙特卡罗法(2D) 分析二维刻蚀剖面形貌 传统的等离子体刻蚀设备即非理想的离子通量对ALE形貌的影响
    国内 Ma等[4] 采用商业求解器CFD-ACE+耦合了流体、传热、化学、等离子体和电磁场, 通过有限元方法求解 1D流体模型、蒙特卡罗法 元胞法耦合蒙特卡罗法(2D) 对比IEADs和刻蚀样貌 定制偏压波形对IEADs和刻蚀槽轮廓的影响
    本文 元胞法耦合蒙特卡罗法(3D) 统计表面物质占比 ALE最优的钝化和刻蚀时间以及该最优时间随AR的变化规律
    DownLoad: CSV

    表 2  钝化过程和刻蚀过程中离子和中性基的通量

    Table 2.  Ion and neutral fluxes during passivation and etching processes.

    Ion Flux/(1020 ${{\text{m}}^{ - 2}}{\cdot}{{\text{s}}^{ - 1}}$)
    Passivation Ar+ 1.762
    ${\text{Cl}}_2^ + $ 1.614
    Cl+ 1.890
    Cl Radical 69.210
    Etching Ar+ 21.710
    DownLoad: CSV

    表 3  AR为1状态下, 刻蚀启动条件不同时完成ALE单循环所需时间以及Si残留占比

    Table 3.  Time required for completing a single ALE cycle and Si residual ratio under different etching initiation conditions with AR of 1.

    Etching initiation
    condition (the
    largest percentage)
    SiCl SiCl2 SiCl3 Accumluation
    Passivation time/s 0.030 0.106 0.550 0.148
    Etching time/s 0.296 0.182 0.128 0.155
    Total time/s 0.326 0.288 0.678 0.303
    Si residual
    percent/%
    17.34 1.35 1.00 1.09
    DownLoad: CSV

    表 4  ALE刻蚀相同深度的沟槽时间对比

    Table 4.  Comparison of ALE time for trenches with the same depth.

    Total passivation time/s Total etching time/s Number
    of ALE
    cycles
    Total
    ALE
    time/s
    This paper 2.388 24.520 100 26.908
    Ranjan
    et al.[14]
    2.200 38.500 55 40.700
    DownLoad: CSV

    表 5  AR与原子层刻蚀时间线性拟合的均方根误差(root mean square error, RMSE)和决定系数

    Table 5.  Root mean square error (RMSE) and coefficient of determination for linear fitting of AR with atomic layer etching time.

    TimePassivation timeEtching timeTotal time
    RMSE0.0180790.00528290.019098
    R20.992710.990070.99478
    DownLoad: CSV
  • [1]

    Jung J, Kim K 2023 Materials 16 3611Google Scholar

    [2]

    Hao Q, Kim P, Nam S K, Kang S Y, Donnelly V M 2023 J. Vac. Sci. Technol., A 41 032605Google Scholar

    [3]

    Eliceiri M, Rho Y, Li R, Grigoropoulos C P 2023 J. Vac. Sci. Technol., A 41 022602Google Scholar

    [4]

    Ma X, Zhang S, Dai Z, Wang Y 2017 Plasma Sci. Technol. 19 085502Google Scholar

    [5]

    Huard C M, Zhang Y, Sriraman S, Paterson A, Kanarik K J, Kushner M J 2017 J. Vac. Sci. Technol., A 35 031306Google Scholar

    [6]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol. , A 8 1844Google Scholar

    [7]

    Matsuura T, Murota J, Sawada Y, Ohmi T 1993 Appl. Phys. Lett. 63 2803Google Scholar

    [8]

    Imai S, Haga T, Matsuzaki O, Hattori T, Matsumura M 1995 Jpn. J. Appl. Phys., Part 1 34 5049Google Scholar

    [9]

    Kim J K, Cho S I, Lee S H, Kim C K, Min K S, Kang S H, Yeom G Y 2013 J. Vac. Sci. Technol., A 31 061310Google Scholar

    [10]

    Song E J, Kim J H, Kwon J D, Kwon S H, Ahn J H 2018 Jpn. J. Appl. Phys. 57 106505Google Scholar

    [11]

    Goodyear A, Cooke M 2017 J. Vac. Sci. Technol., A 35 01A105Google Scholar

    [12]

    Yoon M Y, Yeom H J, Kim J H, Chegal W, Cho Y J, Kwon D C, Jeong J R, Lee H C 2021 Phys. Plasmas 28 063504Google Scholar

    [13]

    Nakamura S, Tanide A, Kimura T, Nadahara S, Ishikawa K, Oda O, Hori M 2023 J. Appl. Phys. 133 043302Google Scholar

    [14]

    Ranjan A, Wang M, Sherpa S D, Rastogi V, Koshiishi A, Ventzek P L G 2016 J. Vac. Sci. Technol., A 34 031304Google Scholar

    [15]

    Agarwal A, Kushner M J 2009 J. Vac. Sci. Technol., A 27 37Google Scholar

    [16]

    Huard C M, Lanham S J, Kushner M J 2018 J. Phys. D: Appl. Phys. 51 155201Google Scholar

    [17]

    贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 物理学报 60 045209Google Scholar

    He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. 60 045209Google Scholar

    [18]

    Vella J R, Humbird D, Graves D B 2022 J. Vac. Sci. Technol., B 40 023205Google Scholar

    [19]

    Sui J, Zhang S, Liu Z, Yan J, Dai Z 2016 Plasma Sci. Technol. 18 666Google Scholar

    [20]

    葛婕 2014 硕士学位论文 (北京: 清华大学)

    Ge J 2014 M. S. Thesis (Beijing: Tsinghua University

    [21]

    Brezmes A O, Breitkopf C 2015 Vacuum 116 65Google Scholar

    [22]

    Liu Z L, Jing X B, Yao K L 2005 J. Phys. D: Appl. Phys. 38 1899Google Scholar

    [23]

    杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 物理学报 62 208201Google Scholar

    Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201Google Scholar

    [24]

    高扬福, 宋亦旭, 孙晓民 2014 物理学报 63 048201Google Scholar

    Gao Y F, Song Y X, Sun X M 2014 Acta Phys. Sin. 63 048201Google Scholar

    [25]

    郑树琳, 宋亦旭, 孙晓民 2013 物理学报 62 108201Google Scholar

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201Google Scholar

    [26]

    Huard C M, Zhang Y, Sriraman S, Paterson A, Kushner M J 2017 J. Vac. Sci. Technol. , A 35 05C301Google Scholar

    [27]

    Han J, Pribyl P, Gekelman W, Paterson A, Lanham S J, Qu C, Kushner M J 2019 Phys. Plasmas 26 103503Google Scholar

    [28]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

  • [1] Yuan Heze, Chen Xinliang, Liang Bingquan, Sun Aixin, Wang Xuejiao, Zhao Ying, Zhang Xiaodan. Research progress in passivation layer technology for crystalline silicon solar cells. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241292
    [2] Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition and application of group III nitrides semiconductor and their alloys. Acta Physica Sinica, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [3] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [4] Wang Chen, Wen Pan, Peng Cong, Xu Meng, Chen Long-Long, Li Xi-Feng, Zhang Jian-Hua. Effect of passivation layer on back channel etching InGaZnO thin film transistors. Acta Physica Sinica, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [5] Zhang Quan-Zhi, Zhang Lei-Yu, Ma Fang-Fang, Wang You-Nian. Cryogenic etching of porous material. Acta Physica Sinica, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [6] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [7] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [8] Zhao Jie, Tang De-Li, Xu Li, Li Ping-Chuan, Zhang Fan, Li Jian, Gui Bing-Yi. Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster. Acta Physica Sinica, 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [9] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [10] Wang Guang-Xu, Chen Peng, Liu Jun-Lin, Wu Xiao-Ming, Mo Chun-Lan, Quan Zhi-Jue, Jiang Feng-Yi. Influence of etching AlN buffer layer on the surface roughening of N-polar n-GaN grown on Si substrate. Acta Physica Sinica, 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [11] Gao Yang-Fu, Song Yi-Xu, Sun Xiao-Min. An optimization method for ion etching yield modeling based on etching velocity matching. Acta Physica Sinica, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [12] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [13] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [14] Xu Xiang-Dong, Liu Ying, Qiu Ke-Qiang, Liu Zheng-Kun, Hong Yi-Lin, Fu Shao-Jun. Ion beam etching for multilayer dielectric pulse compressor gratings with top layers of HfO2. Acta Physica Sinica, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [15] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [16] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [17] Zhang Kai-Xiao, Chen Dun-Jun, Shen Bo, Tao Ya-Qi, Wu Xiao-Shan, Xu Jin, Zhang Rong, Zheng You-Dou. The effects of passivation and temperature on the barrier strain of Al0.22Ga0.78N/GaN heterostructures. Acta Physica Sinica, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [18] He Li-Rong, Gu Chun-Ming, Shen Wen-Zhong, Cao Jun-Cheng, Hiroshi Ogawa, Guo Qi-Xin. Generation and detection of terahertz radiation on reactive ion etched ZnTe surfaces. Acta Physica Sinica, 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
    [19] Ma Bing-Xian, Yao Ning, Yang Shi-E, Lu Zhan-Ling, Fan Zhi-Qin, Zhang Bing-Lin. Influence of hydrogen-enhanced etching on the quality of diamond films and the existing form of sp2 bonding carbon atoms. Acta Physica Sinica, 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
    [20] DU YONG-CHANG, YAN MAO-XUN, ZHANG YU-FENG, GUO HAI, HU KE-LIANG. INFRARED ABSORPTION OF DOPED SILICON PASSIVATED BY ATOMIC HYDROGEN, DEUTERIUM AND IMPLANTED BY PROTON. Acta Physica Sinica, 1987, 36(11): 1427-1432. doi: 10.7498/aps.36.1427
Metrics
  • Abstract views:  3838
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2023
  • Accepted Date:  11 August 2023
  • Available Online:  05 September 2023
  • Published Online:  05 November 2023

/

返回文章
返回