-
Terahertz waves are between microwave and infrared, and currently, terahertz waves are mainly transmitted in free space. Metal wire waveguides have been widely studied due to their outstanding transmission characteristics such as low loss and low dispersion. In this study, copper wires are selected as the research samples based on the skin depth of terahertz waves on different metal wire surfaces. An adjustable metal wire waveguide transmission characteristic testing optical path is studied based on the terahertz time-domain spectroscopy system. The time-domain signals transmitted through single/double copper wires with different radii, lengths, and port states are collected. Then, the finite element method is used to analyze the transmission characteristics of single/double copper wires with different radii, lengths, and port states, and the transmission characteristics of single/double copper wires with different degrees of deformation in the air domain are simulated. The experimental results indicate that the transmission loss increases with copper wire length increasing, and the thinner the metal wire, the slower the transmission speed is. The influence of port shape on transmission characteristics is not so significant as that of length variation. The thicker the bimetallic wire, the faster the transmission speed is. The simulation results show that when terahertz waves are transmitted on a single metal wire, the electric field is mainly distributed on the surface of the metal wire, and the finer the metal wire, the smaller the mode field area of the surface plasmon is. When the metal line becomes elliptical, the mode field is mainly distributed on both ends of the major axis; When terahertz waves are transmitted in bimetallic wires, the mode field is mainly distributed between the two wires, and the farther the distance, the smaller the mode field area is. In this work, the terahertz transmission characteristics of single wires and bimetallic wires are studied by combining experimental method and simulation analysis, providing a reference for the subsequent development of efficient terahertz metal waveguides.
[1] Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945
[2] Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar
[3] 格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 物理学报 72 184101Google Scholar
Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar
[4] Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar
[5] Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163
[6] 陶磊 2021 中国安全防范技术与应用 110 11Google Scholar
Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar
[7] Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar
[8] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar
Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar
[9] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 物理学报 73 026102Google Scholar
Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar
[10] 王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar
Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar
[11] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar
Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar
[12] Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar
[13] Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162
[14] 王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241
Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241
[15] 刘燕 2019 博士学位论文(成都: 电子科技大学)
Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China
[16] Wang K L, Mittleman D 2004 Nature 432 376Google Scholar
[17] Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar
[18] Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1
[19] 李爽 2013 硕士学位论文 (上海: 上海大学)
Li S 2013 M. S. Thesis (Shanghai: Shanghai University
[20] Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar
[21] Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar
[22] Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar
[23] 高华 2016 博士学位论文(上海: 上海大学)
Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University
[24] 钟任斌 2012 博士学位论文(成都: 电子科技大学)
Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China
-
图 7 不同端口状态铜线样品传输的太赫兹时域信号 (a) 直径为1.6 mm铜线传输的太赫兹时域信号; (b) 直径为1.8 mm铜线传输的太赫兹时域信号; (c) 两种端口铜线传输的太赫兹时域相移
Figure 7. Terahertz time-domain signals transmitted by copper wire samples with different port states: (a) Terahertz time-domain signals transmitted by copper wire with a diameter of 1.6 mm; (b) terahertz time-domain signal transmitted by a copper wire with a diameter of 1.8 mm; (c) terahertz time-domain phase shift in copper wire transmission with two different ports.
图 9 半径400 μm金属线横截面模场分布 (a) 圆形截面上Er分布; (b) Ez强度分布; (c) Er强度沿径向变化曲线
Figure 9. Mode field distribution on the cross-section of a metal wire with a radius of 400 m: (a) Er distribution on a circular cross-section; (b) Ez intensity distribution; (c) Er intensity variation curve along the radial direction.
-
[1] Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945
[2] Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar
[3] 格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 物理学报 72 184101Google Scholar
Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar
[4] Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar
[5] Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163
[6] 陶磊 2021 中国安全防范技术与应用 110 11Google Scholar
Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar
[7] Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar
[8] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar
Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar
[9] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 物理学报 73 026102Google Scholar
Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar
[10] 王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar
Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar
[11] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar
Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar
[12] Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar
[13] Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162
[14] 王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241
Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241
[15] 刘燕 2019 博士学位论文(成都: 电子科技大学)
Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China
[16] Wang K L, Mittleman D 2004 Nature 432 376Google Scholar
[17] Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar
[18] Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1
[19] 李爽 2013 硕士学位论文 (上海: 上海大学)
Li S 2013 M. S. Thesis (Shanghai: Shanghai University
[20] Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar
[21] Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar
[22] Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar
[23] 高华 2016 博士学位论文(上海: 上海大学)
Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University
[24] 钟任斌 2012 博士学位论文(成都: 电子科技大学)
Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China
Catalog
Metrics
- Abstract views: 2055
- PDF Downloads: 80
- Cited By: 0