Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the nucleation control of WS2 on Au(111) surfaces

Hu Yi-Shan Yuan Qing-Hong

Citation:

Theoretical study on the nucleation control of WS2 on Au(111) surfaces

Hu Yi-Shan, Yuan Qing-Hong
PDF
HTML
Get Citation
  • Two-dimensional tungsten disulfide (WS2), as a semiconductor material with unique layer-dependent electronic and optoelectronic characteristics, demonstrates a promising application prospect in the field of optoelectronic devices. The fabrication of wafer-scale monolayer WS2 films is currently a critical challenge that propels their application in advanced transistors and integrated circuits. Chemical vapor deposition (CVD) is a feasible technique for fabricating large-area, high-quality monolayer WS2 films, yet the complexity of its growth process results in low growth efficiency and inconsistent film quality of WS2. In order to guide experimental efforts to diminish grain boundaries in WS2, thereby improving film quality to enhance electronic performance and mechanical stability, this study investigates the nucleation mechanisms of WS2 during CVD growth through first-principles theoretical calculations. By considering chemical potential as a crucial variable, we analyze the growth energy curves of WS2 under diverse experimental conditions. Our findings demonstrate that modulating the temperature or pressure of the tungsten and sulfur precursors can decisively influence the nucleation rate of WS2. Notably, the nucleation rate reaches a peak at a tungsten source temperature of 1250 K, while an increase in sulfur source temperature or a decrease in pressure can suppress the nucleation rate, thereby enhancing the crystallinity and uniformity of monolayer WS2. These insights not only furnish a robust theoretical foundation for experimentally fine-tuning the nucleation rate as needed but also provide strategic guidance for optimizing experimental parameters to refine the crystallinity and uniformity of monolayer WS2 films. Such advancements are expected to accelerate the deployment of WS2 materials in a range of high-performance electronic devices, marking a significant stride in the field of materials science and industrial applications.
      Corresponding author: Yuan Qing-Hong, qhyuan@phy.ecnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1200801) and the National Natural Science Foundation of China (Grant No. 22173031).
    [1]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [2]

    Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A 2014 ACS Nano 8 8174Google Scholar

    [3]

    Ding D G, Wang S, Xia Y P, Li P, He D L, Zhang J Q, Zhao S W, Yu G H, Zheng Y H, Cheng Y, Xie M H, Ding F, Jin C H 2022 ACS Nano 16 17356Google Scholar

    [4]

    Falin A, Holwill M, Lü H F, Gan W, Cheng J, Zhang R, Qian D, Barnett M R, Santos E J G, Novoselov K S, Tao T, Wu X J, Lu H L 2021 ACS Nano 15 2600Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 物理学报 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Mahler B, Hoepfner V, Liao K, Ozin G A 2014 J. Am. Chem. Soc. 136 14121Google Scholar

    [7]

    Kuc A, Zibouche N, Heine T 2011 Phy. Rev. B 83 245213Google Scholar

    [8]

    Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y 2022 Chin. Phys. B 31 057803Google Scholar

    [9]

    Huo N J, Yang S X, Wei Z M, Li S S, Xia J B, Li J B 2014 Sci. Rep. 4 5209Google Scholar

    [10]

    Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466Google Scholar

    [11]

    Bin Rafiq M K S, Amin N, Alharbi H F, Luqman M, Ayob A, Alharthi Y S, Alharthi N H, Bais B, Akhtaruzzaman M 2020 Sci. Rep. 10 771Google Scholar

    [12]

    Han L X, Yang M, Wen P T, Gao W, Huo N J, Li J B 2021 Nanoscale. Adv. 3 2657Google Scholar

    [13]

    Pawbake A S, Waykar R G, Late D J, Jadkar S R 2016 ACS Appl. Mater. Interfaces 8 3359Google Scholar

    [14]

    Wang H C, Lin Y H, Liu X, Deng X H, Ben J W, Yu W J, Zhu D L, Liu X K 2023 Chin. Phys. B 32 018504Google Scholar

    [15]

    Chakraborty B, Gu J, Khatoniar M, Menon V M 2019 2019 Conference on Lasers and Electro-Optics IEEE Munich, Germany, June 23–27, 2019

    [16]

    Xu Z Q, Zhang Y P, Lin S H, Zheng C X, Zhong Y L, Xia X, Li Z P, Sophia P J, Fuhrer M S, Cheng Y B, Bao Q L 2015 ACS Nano 9 6178Google Scholar

    [17]

    Wan Y, Li E, Yu Z H, Huang J K, Li M Y, Chou A S, Lee Y T, Lee C J, Hsu H C, Zhan Q, Aljarb A, Fu J H, Chiu S P, Wang X R, Lin J J, Chiu S P, Chang W H, Wang H, Shi Y, Lin N, Cheng Y C, Tung V, Li L J 2022 Nat. Commun. 13 4149Google Scholar

    [18]

    Zribi R, Crispi S, Giusi D, Zhukush M, Ampelli C, Shen C, Raza M H, Pinna N, Neri G 2024 ACS Appl. Nano Mater. 7 4998Google Scholar

    [19]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2012 Nat. Nanotechnol. 8 100Google Scholar

    [20]

    Xu Z H, Lü Y F, Li J Z, Huang F, Nie P B, Zhang S W, Zhao S C, Zhao S X, Wei G D 2019 RSC Adv. 9 29628Google Scholar

    [21]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532 Google Scholar

    [22]

    Loh T A J, Chua D H C, Wee A T S 2015 Sci. Rep. 5 18116Google Scholar

    [23]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [24]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [25]

    Meng L, Hu S, Yan W, Feng J, Li H, Yan X H 2020 Chem. Phys. Lett. 739 136945Google Scholar

    [26]

    Rong Y M, Fan Y, Leen Koh A, Robertson A W, He K, Wang S S, Tan H J, Sinclair R, Warner J H 2014 Nanoscale 6 12096Google Scholar

    [27]

    Richey N E, Haines C, Tami J L, McElwee-White L 2017 Chem. Commun. 53 7728Google Scholar

    [28]

    Xie Y, Ma X H, Wang Z, Nan T, Wu R X, Zhang P, Wang H L, Wang Y B, Zhan Y J, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [29]

    Cong C X, Shang J Z, Wu X, Cao B C, Peimyoo N, Qiu C Y, Sun L T, Yu T 2013 Adv. Opt. Mater. 2 131Google Scholar

    [30]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [31]

    Zhang G X, Wang C X, Yan B, Ning B, Zhao Y, Zhou D H, Shi X, Chen S K, Shen J, Xiao Z Y, Zhao H Q 2022 J. Mater. Sci. Mater. Electron. 33 22560Google Scholar

    [32]

    Liu P, Li X X, Ai H X, Shen Y, Deng J, Ding X L, Wang W J 2023 J. Phys. Chem. C 127 21204Google Scholar

    [33]

    Huang L Y, Li M Y, Liew S L, Lin S C, Chou A S, Hsu M C, Hsu C H, Lin Y T, Mao P S, Hou D H, Liu W C, Wu C I, Chang W H, Wang H, Li L J, Wei K H 2023 ACS Mater. Lett. 5 1760Google Scholar

    [34]

    Yang W H, Mu Y B, Chen X S, Jin N J, Song J H, Chen J J, Dong L X, Liu C R, Xuan W P, Zhou C J, Cong C X, Shang J S, He S L, Wang G F, Li J 2023 Discov. Nano 18 13Google Scholar

    [35]

    Wang J H, Xu X Z, Cheng T, Gu L H, Qiao R X, Liang Z h, Ding D, Hong H, Zheng P M, Zhang Z B, Zhang Z H, Zhang S, Cui G L, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y G, Xue G D, Fang X J, Tian J P, Wu M H, Guo Y, Yao Z X, Jiao Q Z, Liu L, Gao P, Li Q Y, Yang R, Zhang G Y, Tang Z X, Yu D P, Wang E, Lu J M, Zhao Y, Wu S W, Ding F, Liu K H 2022 Nat. Nanotechnol. 17 33Google Scholar

    [36]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [37]

    Qiu H, Xu T, Wang Z, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [38]

    Su L Q, Yu Y F, Cao L Y, Zhang Y 2023 Sci. China Mater. 66 3949Google Scholar

    [39]

    Thangaraja A, Shinde S M, Kalita G, Tanemura M 2015 Mater. Lett. 156 156Google Scholar

    [40]

    Chen J, Shao K, Yang W H, Tang W Q, Zhou J P, He Q M, Wu Y P, Zhang C M, Li X, Yang X, Wu Z M, Kang J Y 2019 ACS Appl. Mater. Interfaces 11 19381Google Scholar

    [41]

    Li C, Yamaguchi Y, Kaneko T, Kato T 2017 Appl. Phys. Express 10 075201Google Scholar

    [42]

    Lan F F, Yang R X, Hao S, Zhou B Z, Sun K W, Cheng H J, Zhang S, Li L J, Jin L 2020 Appl. Surf. Sci. 504 144378Google Scholar

    [43]

    Zhang Q H, Lu J F, Wang Z Y, Dai Z G, Zhang Y P, Huang F Z, Bao Q L, Duan W H, Fuhrer M S, Zheng C X 2018 Adv. Opt. Mater. 6 1701347Google Scholar

    [44]

    Kang K N, Godin K, Yang E H 2015 Sci. Rep. 5 13205Google Scholar

    [45]

    Shi B, Zhou D M, Qiu R S, Bahri M, Kong X D, Zhao H Q, Tlili C, Wang D Q 2020 Appl. Surf. Sci. 533 147479Google Scholar

    [46]

    Yin H, Zhang X D, Lu J W, Geng X M, Wan Y F, Wu M Z, Yang P 2019 J. Mater. Sci 55 990Google Scholar

    [47]

    Li K L, Wang W J 2020 J. Cryst. Growth 540 125645Google Scholar

    [48]

    Dendzik M, Michiardi M, Sanders C, Bianchi M, Miwa J A, Grønborg S S, Lauritsen J V, Bruix A, Hammer B, Hofmann P 2015 Phy. Rev. B 92 245442Google Scholar

    [49]

    Fuchtbauer H G, Tuxen A K, Moses P G, Topsoe H, Besenbacher F, Lauritsen J V 2013 Phys Chem. Chem. Phys. 15 15971Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [51]

    Kresse G, Furthmuller J 1996 Phy. Rev. B 54 11169Google Scholar

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [54]

    Blöchl P E 1994 Phy. Rev. B 50 17953Google Scholar

    [55]

    Yue Y C, Chen J C, Zhang Y, Ding S, Zhao F L, Wang Y, Zhang D H, Li R J, Dong H L, Hu W P, Feng Y, Feng W 2018 ACS Appl. Mater. Interfaces 10 22435Google Scholar

    [56]

    Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lü R, López-Urías F, Crespi V H, Terrones H, Terrones M 2012 Nano Lett. 13 3447Google Scholar

    [57]

    Misawa M, Tiwari S, Hong S, Krishnamoorthy A, Shimojo F, Kalia R K, Nakano A, Vashishta P 2017 J. Phys. Chem. Lett. 8 6206Google Scholar

    [58]

    Gao J F, Yuan Q H, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695Google Scholar

    [59]

    Zhang W H, Wu P, Li Z Y, Yang J L 2011 J. Phys. Chem. C 115 17782Google Scholar

    [60]

    Li X B, Zhang J B, Zhou N, Xu H, Yang R S 2021 ACS Appl. Electron. Mater. 3 5138Google Scholar

    [61]

    Gao J F, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [62]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [63]

    Lan S G, Zhang Z X, Hong Y K, She Y H, Pan B J, Xu Y, Wang P J 2023 Adv. Mater. Interfaces 10 2300713Google Scholar

    [64]

    刘兆肃, 刘国濠, 叶晓宜, 张仕源, 郑晓婷, 劳媚媚, 徐海涛 2021 材料研究与应用 15 486Google Scholar

    Liu Z S, Liu G H, Ye X Y, Zhang S Y, Zheng X T, Lao M M, Xu H T 2021 Mater. Res. Appl. 15 486Google Scholar

    [65]

    Babu Shinde N, Deul Ryu B, Hong C H, Francis B, Chandramohan S, Kumar Eswaran S 2021 Appl. Surf. Sci. 568 150908Google Scholar

  • 图 1  (a)以W或S边终结的三角形WS2团簇的形成能(Ef)与其尺寸大小(N)的关系, $ {E_{\text{f}}} = {E_{{\text{tot}}}} - {N_{\text{W}}} \cdot {\mu _{{\text{W(ref)}}}} - {N_{\text{S}}} \cdot {\mu _{{\text{S(ref)}}}} $, 其中$ {E_{{\text{tot}}}} $为WS2整体能量, $ {N_{\text{W}}} $和$ {N_{\text{S}}} $分别为W, S原子数, $ {\mu _{{\text{W(ref)}}}} $, $ {\mu _{{\text{S(ref)}}}} $分别为W, S前驱体的参考化学势. (b), (c) Au(111)表面S边终结的WS2团簇的形成能及其线性拟合

    Figure 1.  (a) Forming energy (Ef) versus size (N) of triangular WS2 clusters terminated with W or S edge, $ {E_{\text{f}}} = {E_{{\text{tot}}}} - {N_{\text{W}}} \cdot {\mu _{{\text{W(ref)}}}} - $$ {N_{\text{S}}} \cdot {\mu _{{\text{S(ref)}}}} $, where $ {E_{{\text{tot}}}} $ is the overall energy of WS2, $ {N_{\text{W}}} $ and $ {N_{\text{S}}} $ are the number of atoms W and S respectively, $ {\mu _{{\text{W(ref)}}}} $ and $ {\mu _{{\text{S(ref)}}}} $ are the reference chemical potential of W and S precursors respectively. (b), (c) Formation energy and linear fitting of WS2 clusters terminated with S edge on Au(111) surface.

    图 2  前驱体(a)钨源、(b)硫源化学势随温度的变化; (c) 500 K的硫源化学势随硫源压强的变化

    Figure 2.  Changes of chemical potential of precursor (a) tungsten source and (b) sulfur source with temperature; (c) chemical potential of sulfur source changes with the pressure of sulfur source at 500 K.

    图 3  不同钨源温度(a)、硫源温度(b)以及硫源压强(c)条件下Au(111)表面WS2的吉布斯自由能与团簇大小的关系

    Figure 3.  Gibbs free energy versus cluster size of WS2 on Au(111) surface under different (a) tungsten source temperature, (b) sulfur source temperature and (c) sulfur source pressure.

    图 4  Au(111)表面 WS2团簇的成核速率与不同实验条件的关系 (a) T(W); (b) T(S); (c) P(S)/P0. 纵坐标为log10刻度类型, 红色虚线标注为T(W) = 1300 K, T(S) = 500 K, P(S) = 763.10 Pa实验条件下WS2团簇的成核速率

    Figure 4.  Nucleation rates of WS2 clusters on Au(111) surface under different experimental conditions: (a) T(W); (b) T(S); (c) P(S)/P0. Scale of the vertical axis in the graph is non-linear and is of the log10 type, and the red dotted lines indicate the nucleation rates of WS2 clusters under experimental conditions of T(W) = 1300 K, T(S) = 500 K and P(S) = 763.10 Pa.

  • [1]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [2]

    Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A 2014 ACS Nano 8 8174Google Scholar

    [3]

    Ding D G, Wang S, Xia Y P, Li P, He D L, Zhang J Q, Zhao S W, Yu G H, Zheng Y H, Cheng Y, Xie M H, Ding F, Jin C H 2022 ACS Nano 16 17356Google Scholar

    [4]

    Falin A, Holwill M, Lü H F, Gan W, Cheng J, Zhang R, Qian D, Barnett M R, Santos E J G, Novoselov K S, Tao T, Wu X J, Lu H L 2021 ACS Nano 15 2600Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 物理学报 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Mahler B, Hoepfner V, Liao K, Ozin G A 2014 J. Am. Chem. Soc. 136 14121Google Scholar

    [7]

    Kuc A, Zibouche N, Heine T 2011 Phy. Rev. B 83 245213Google Scholar

    [8]

    Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y 2022 Chin. Phys. B 31 057803Google Scholar

    [9]

    Huo N J, Yang S X, Wei Z M, Li S S, Xia J B, Li J B 2014 Sci. Rep. 4 5209Google Scholar

    [10]

    Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466Google Scholar

    [11]

    Bin Rafiq M K S, Amin N, Alharbi H F, Luqman M, Ayob A, Alharthi Y S, Alharthi N H, Bais B, Akhtaruzzaman M 2020 Sci. Rep. 10 771Google Scholar

    [12]

    Han L X, Yang M, Wen P T, Gao W, Huo N J, Li J B 2021 Nanoscale. Adv. 3 2657Google Scholar

    [13]

    Pawbake A S, Waykar R G, Late D J, Jadkar S R 2016 ACS Appl. Mater. Interfaces 8 3359Google Scholar

    [14]

    Wang H C, Lin Y H, Liu X, Deng X H, Ben J W, Yu W J, Zhu D L, Liu X K 2023 Chin. Phys. B 32 018504Google Scholar

    [15]

    Chakraborty B, Gu J, Khatoniar M, Menon V M 2019 2019 Conference on Lasers and Electro-Optics IEEE Munich, Germany, June 23–27, 2019

    [16]

    Xu Z Q, Zhang Y P, Lin S H, Zheng C X, Zhong Y L, Xia X, Li Z P, Sophia P J, Fuhrer M S, Cheng Y B, Bao Q L 2015 ACS Nano 9 6178Google Scholar

    [17]

    Wan Y, Li E, Yu Z H, Huang J K, Li M Y, Chou A S, Lee Y T, Lee C J, Hsu H C, Zhan Q, Aljarb A, Fu J H, Chiu S P, Wang X R, Lin J J, Chiu S P, Chang W H, Wang H, Shi Y, Lin N, Cheng Y C, Tung V, Li L J 2022 Nat. Commun. 13 4149Google Scholar

    [18]

    Zribi R, Crispi S, Giusi D, Zhukush M, Ampelli C, Shen C, Raza M H, Pinna N, Neri G 2024 ACS Appl. Nano Mater. 7 4998Google Scholar

    [19]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2012 Nat. Nanotechnol. 8 100Google Scholar

    [20]

    Xu Z H, Lü Y F, Li J Z, Huang F, Nie P B, Zhang S W, Zhao S C, Zhao S X, Wei G D 2019 RSC Adv. 9 29628Google Scholar

    [21]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532 Google Scholar

    [22]

    Loh T A J, Chua D H C, Wee A T S 2015 Sci. Rep. 5 18116Google Scholar

    [23]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [24]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [25]

    Meng L, Hu S, Yan W, Feng J, Li H, Yan X H 2020 Chem. Phys. Lett. 739 136945Google Scholar

    [26]

    Rong Y M, Fan Y, Leen Koh A, Robertson A W, He K, Wang S S, Tan H J, Sinclair R, Warner J H 2014 Nanoscale 6 12096Google Scholar

    [27]

    Richey N E, Haines C, Tami J L, McElwee-White L 2017 Chem. Commun. 53 7728Google Scholar

    [28]

    Xie Y, Ma X H, Wang Z, Nan T, Wu R X, Zhang P, Wang H L, Wang Y B, Zhan Y J, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [29]

    Cong C X, Shang J Z, Wu X, Cao B C, Peimyoo N, Qiu C Y, Sun L T, Yu T 2013 Adv. Opt. Mater. 2 131Google Scholar

    [30]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [31]

    Zhang G X, Wang C X, Yan B, Ning B, Zhao Y, Zhou D H, Shi X, Chen S K, Shen J, Xiao Z Y, Zhao H Q 2022 J. Mater. Sci. Mater. Electron. 33 22560Google Scholar

    [32]

    Liu P, Li X X, Ai H X, Shen Y, Deng J, Ding X L, Wang W J 2023 J. Phys. Chem. C 127 21204Google Scholar

    [33]

    Huang L Y, Li M Y, Liew S L, Lin S C, Chou A S, Hsu M C, Hsu C H, Lin Y T, Mao P S, Hou D H, Liu W C, Wu C I, Chang W H, Wang H, Li L J, Wei K H 2023 ACS Mater. Lett. 5 1760Google Scholar

    [34]

    Yang W H, Mu Y B, Chen X S, Jin N J, Song J H, Chen J J, Dong L X, Liu C R, Xuan W P, Zhou C J, Cong C X, Shang J S, He S L, Wang G F, Li J 2023 Discov. Nano 18 13Google Scholar

    [35]

    Wang J H, Xu X Z, Cheng T, Gu L H, Qiao R X, Liang Z h, Ding D, Hong H, Zheng P M, Zhang Z B, Zhang Z H, Zhang S, Cui G L, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y G, Xue G D, Fang X J, Tian J P, Wu M H, Guo Y, Yao Z X, Jiao Q Z, Liu L, Gao P, Li Q Y, Yang R, Zhang G Y, Tang Z X, Yu D P, Wang E, Lu J M, Zhao Y, Wu S W, Ding F, Liu K H 2022 Nat. Nanotechnol. 17 33Google Scholar

    [36]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [37]

    Qiu H, Xu T, Wang Z, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [38]

    Su L Q, Yu Y F, Cao L Y, Zhang Y 2023 Sci. China Mater. 66 3949Google Scholar

    [39]

    Thangaraja A, Shinde S M, Kalita G, Tanemura M 2015 Mater. Lett. 156 156Google Scholar

    [40]

    Chen J, Shao K, Yang W H, Tang W Q, Zhou J P, He Q M, Wu Y P, Zhang C M, Li X, Yang X, Wu Z M, Kang J Y 2019 ACS Appl. Mater. Interfaces 11 19381Google Scholar

    [41]

    Li C, Yamaguchi Y, Kaneko T, Kato T 2017 Appl. Phys. Express 10 075201Google Scholar

    [42]

    Lan F F, Yang R X, Hao S, Zhou B Z, Sun K W, Cheng H J, Zhang S, Li L J, Jin L 2020 Appl. Surf. Sci. 504 144378Google Scholar

    [43]

    Zhang Q H, Lu J F, Wang Z Y, Dai Z G, Zhang Y P, Huang F Z, Bao Q L, Duan W H, Fuhrer M S, Zheng C X 2018 Adv. Opt. Mater. 6 1701347Google Scholar

    [44]

    Kang K N, Godin K, Yang E H 2015 Sci. Rep. 5 13205Google Scholar

    [45]

    Shi B, Zhou D M, Qiu R S, Bahri M, Kong X D, Zhao H Q, Tlili C, Wang D Q 2020 Appl. Surf. Sci. 533 147479Google Scholar

    [46]

    Yin H, Zhang X D, Lu J W, Geng X M, Wan Y F, Wu M Z, Yang P 2019 J. Mater. Sci 55 990Google Scholar

    [47]

    Li K L, Wang W J 2020 J. Cryst. Growth 540 125645Google Scholar

    [48]

    Dendzik M, Michiardi M, Sanders C, Bianchi M, Miwa J A, Grønborg S S, Lauritsen J V, Bruix A, Hammer B, Hofmann P 2015 Phy. Rev. B 92 245442Google Scholar

    [49]

    Fuchtbauer H G, Tuxen A K, Moses P G, Topsoe H, Besenbacher F, Lauritsen J V 2013 Phys Chem. Chem. Phys. 15 15971Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [51]

    Kresse G, Furthmuller J 1996 Phy. Rev. B 54 11169Google Scholar

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [54]

    Blöchl P E 1994 Phy. Rev. B 50 17953Google Scholar

    [55]

    Yue Y C, Chen J C, Zhang Y, Ding S, Zhao F L, Wang Y, Zhang D H, Li R J, Dong H L, Hu W P, Feng Y, Feng W 2018 ACS Appl. Mater. Interfaces 10 22435Google Scholar

    [56]

    Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lü R, López-Urías F, Crespi V H, Terrones H, Terrones M 2012 Nano Lett. 13 3447Google Scholar

    [57]

    Misawa M, Tiwari S, Hong S, Krishnamoorthy A, Shimojo F, Kalia R K, Nakano A, Vashishta P 2017 J. Phys. Chem. Lett. 8 6206Google Scholar

    [58]

    Gao J F, Yuan Q H, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695Google Scholar

    [59]

    Zhang W H, Wu P, Li Z Y, Yang J L 2011 J. Phys. Chem. C 115 17782Google Scholar

    [60]

    Li X B, Zhang J B, Zhou N, Xu H, Yang R S 2021 ACS Appl. Electron. Mater. 3 5138Google Scholar

    [61]

    Gao J F, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [62]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [63]

    Lan S G, Zhang Z X, Hong Y K, She Y H, Pan B J, Xu Y, Wang P J 2023 Adv. Mater. Interfaces 10 2300713Google Scholar

    [64]

    刘兆肃, 刘国濠, 叶晓宜, 张仕源, 郑晓婷, 劳媚媚, 徐海涛 2021 材料研究与应用 15 486Google Scholar

    Liu Z S, Liu G H, Ye X Y, Zhang S Y, Zheng X T, Lao M M, Xu H T 2021 Mater. Res. Appl. 15 486Google Scholar

    [65]

    Babu Shinde N, Deul Ryu B, Hong C H, Francis B, Chandramohan S, Kumar Eswaran S 2021 Appl. Surf. Sci. 568 150908Google Scholar

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [4] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [9] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [10] Zhang Wei,  Chen Kai-Bin,  Chen Zhen-Dong. First-principles study on Jahn-Teller effect in Cr monolayer film. Acta Physica Sinica, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [11] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [12] Liu Cong, Wang Jian-Hua, Weng Jun. Preparation of the high-quality highly (100) oriented diamond films with controllable growth. Acta Physica Sinica, 2015, 64(2): 028101. doi: 10.7498/aps.64.028101
    [13] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [14] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [15] Gu Jin-Hua, Ding Yan-Li, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. A spectroscopic ellipsometry study of the abnormal scaling behavior of high-rate-deposited microcrystalline silicon films by VHF-PECVD technique. Acta Physica Sinica, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [16] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [17] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [18] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] Gu Jin-Hua, Zhou Yu-Qin, Zhu Mei-Fang, Li Guo-Hua, Ding Kun, Zhou Bing-Qing, Liu Feng-Zhen, Liu Jin-Long, Zhang Qun-Fang. Study on growth mechanism of low-temperature prepared microcrystalline Si thin f ilms. Acta Physica Sinica, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
  • supplement 13-20240417Suppl.pdf supplement
Metrics
  • Abstract views:  633
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2024
  • Accepted Date:  16 April 2024
  • Available Online:  24 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回