Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of back-contact interface of Cu(In,Ga)Se2 solar cells by single-target magnetron sputtering

Tian Shan-Shan Gao Qian Gao Ze-Ran Xiong Yu-Chen Cong Ri-Dong Yu Wei

Citation:

Design of back-contact interface of Cu(In,Ga)Se2 solar cells by single-target magnetron sputtering

Tian Shan-Shan, Gao Qian, Gao Ze-Ran, Xiong Yu-Chen, Cong Ri-Dong, Yu Wei
PDF
HTML
Get Citation
  • Thin-film solar cells provide an opportunity to reduce the cost of converting solar energy into electricity by replacing expensive and thick silicon wafers, which account for more than 50% of the total cost of photovoltaic (PV) modules. However, many thin-film solar cell materials result in low PV performance due to enhanced recombination through defect states. Cu(In,Ga)Se2 (CIGS) is a promising thin-film solar cell material due to its direct tunable bandgap, high absorption coefficient, low effective electron and hole mass, and abundant constituent elements. Among them, magnetron sputtering or selenization technology is widely used to catch up with the development of preparing large-area CIGS thin-film solar cells because of its uniform film composition and simple process. However, the use of toxic gases such as H2Se and H2S and the difficulty in forming gradient bandgaps limit their development. In this work, the “V” Ga gradient classification of the absorbing layer of CIGS solar cells is realized by sputtering CuGaSe2 (CGS) thin layers of different thickness values in the room temperature layer by sputtering and selenium-free methods of quaternary target sputtering. Firstly, the microstructure of the film is characterized by scanning electron microscope, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and when the CGS layer is located in the middle of the low-temperature layer, the grain size of the film is the largest, the crystallinity is the best, forming a “V-shaped” structure of CGI on the back of the absorbing layer. Subsequently, IV and external quantum efficiency (EQE) tests show that the optimized cell efficiency is as high as 15.04%, and the light response intensity is enhanced in the 300 -1200 nm band. Finally, the admittance spectrum(AS) test shows that the defect energy level of the solar cell changes from InGa defect to VCu defect of lower energy level, and the defect density decreases from 7.04×1015 cm–3 to 5.51×1015 cm–3. This is comparable to the recording efficiency of the current single-target magnetron sputtering CIGS solar cells, demonstrating good application prospects.
      Corresponding author: Cong Ri-Dong, congrd@hbu.edu.cn ; Yu Wei, yuwei@hbu.edu.cn
    [1]

    Cheng K, Shen X F, Liu J L, Liu X S, Du Z L 2021 Sol. Energy 217 70Google Scholar

    [2]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [3]

    Gao Q Q, Yuan S J, Zhou Z J, Kou D X, Zhou W H, Meng Y N, Qi Y F, Han L T, Wu S X 2022 Small 18 2203443Google Scholar

    [4]

    Wang Y H, Tu L H, Chang Y L , Lin S K, Lin T Y, Lai C H 2021 ACS Appl. Energy Mater. 4 11555Google Scholar

    [5]

    Hsu C H, Ho W H, Wei S Y, Lai C H 2017 Adv. Energy Mater. 7 1602571Google Scholar

    [6]

    Hsu C H, Su Y S, Wei S Y, Chen C H, Ho W H, Chang C, Wu Y H, Lin C J, Lai C H 2015 Prog. Photovolt. 23 1621Google Scholar

    [7]

    Dai W L, Gao Z R, Li J J, Qin S M, Wang R B, Xu H Y, Wang X Z, Gao C, Teng X Y, Zhang Y, Hao X J, Wang Y L, Yu W 2021 ACS Appl. Mater. Interfaces 13 49414Google Scholar

    [8]

    Wang Y H, Ho P H, Huang W C, Tu L H, Chang H F, Cai C H, Lai C H 2020 ACS Appl. Mater. Interfaces 12 28320Google Scholar

    [9]

    Kong Y F, Li J M, Ma Z Y, Chi Z, Xiao X D 2020 J. Mater. Chem. A. 8 9760Google Scholar

    [10]

    Hoang V Q, Jeon D H, Park H K, Kim S Y, Kim W H, Hwang D K, Lee J, Son D H, Yang K J, Kang J K, Jo W 2023 ACS Appl. Energy Mater. 6 12180Google Scholar

    [11]

    Giraldo S, Fonoll-Rubio R, Jehl Li-Kao Z, et al. 2020 Prog. Photovolt. 29 334Google Scholar

    [12]

    Wan X J, Yuan M Y, Zeng C H, Lin R X, Li D Y, Hong R J 2024 Sol. Energy 273 112510Google Scholar

    [13]

    Sun Y L, Qin S M, Ding D L, Gao H F, Zhou Q, Guo X Y, Gao C, Liu H X, Zhang Y, Yu W 2023 Chem. Eng. J. 455 140596Google Scholar

    [14]

    Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K 2021 Sol. Energy 227 13Google Scholar

    [15]

    Kim S T, Bhatt V, Kim Y C, Jeong H J, Yun J H, Jang J H 2022 J. Alloys Compd. 899 163301Google Scholar

    [16]

    Busacca A C, Rocca V, Curcio L, et al. 2014 International Conference on Renewable Energy Research and Application (ICRERA), IEEE Milwaukee, WI, USA, October 19–22, 2014 p964

    [17]

    Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S 2013 Appl. Phys. Lett. 103 143903Google Scholar

    [18]

    Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S C, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1900408Google Scholar

    [19]

    Zhao Y H, Yuan S J, Kou D X, Zhou Z J, Wang X S, Xiao H Q, Deng Y Q, Cui C C, Chang Q Q, Wu S X 2020 ACS Appl. Mater. 12 12717Google Scholar

    [20]

    Witte W, Abou-Ras D, Albe K, et al. 2015 Prog. Photovolt. 23 717Google Scholar

    [21]

    Venkatalaxmi A, Padmavathi B S, Amaranath T 2004 Fluid Dyn. Res. 35 229Google Scholar

    [22]

    Thompson C P, Chen L, Shafarman W N, Lee J, Fields S, Birkmire R W 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) Orleans, LA, USA, June 14–19, 2015 p1

    [23]

    Chantana J, Hironiwa D, Watanabe T, Teraji S, Kawamura K, Minemoto T 2015 Sol. Energy Mat. Sol. C. 133 223Google Scholar

    [24]

    Decock K, Khelifi S, Burgelman M 2011 Sol. Energy Mat. Sol. C. 95 1550Google Scholar

  • 图 1  CIGS太阳电池结构示意图及低温层结构示意图

    Figure 1.  Schematic diagram of CIGS solar cell structure and low-temperature layer structure.

    图 2  (a) 不同结构低温层所制备的CIGS薄膜的截面SEM图; (b) CIGS-ref和CIGS-mid的EDS线扫描图绘制的Ga梯度带隙图

    Figure 2.  (a) Cross-sectional SEM images of CIGS films prepared for low-temperature layers with different structures; (b) Ga gradient bandgap plot plotted by EDS line scan plots of CIGS-ref and CIGS-mid.

    图 3  CIGS-ref和CIGS-mid薄膜的AFM图

    Figure 3.  AFM images of CIGS-ref and CIGS-mid films.

    图 4  (a) CIGS吸收层在不同结构低温层条件下的XRD谱图; (b) (112) 峰的半峰宽图; (c) CIGS吸收层在不同结构低温层条件下的Raman结果及其吸收层深度上的CIGS峰位置; (d) 通过XPS得到CIGS-ref和CIGS-mid的GGI数据图

    Figure 4.  (a) XRD of CIGS absorber layer under different structures of low temperature layers; (b) half-peak width plot of peak (112); (c) Raman results of CIGS absorber layers under different structural low-temperature layer conditions and CIGS peak positions on the depth of the absorber layer; (d) GGI data plots of CIGS-ref and CIGS-mid obtained by XPS.

    图 5  基于不同Ga梯度结构条件下制备的CIGS太阳电池的性能参数箱线图 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Figure 5.  Box plots of performance parameters of CIGS solar cells prepared under different Ga gradient structure conditions: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 6  基于不同Ga梯度结构条件下制备的CIGS太阳电池的 (a) J-V曲线, (b) EQE曲线, 以及 (c) 其带隙图

    Figure 6.  (a) J-V curves and (b) EQE curves of CIGS solar cells prepared under different Ga gradient structure conditions and (c) its bandgap diagram.

    图 7  在80—300 K的温度范围内, (a) CIGS-ref和(b) CIGS-mid样品的电流密度-电压(J-V)特性; (c) 两个样品的VOCT的关系曲线; (d) 暗J-VRsT的关系曲线(插图为ln(RsT)与 1000/T 的关系曲线)

    Figure 7.  (a), (b) Current density-voltage (J-V) characteristics of CIGS-ref and CIGS-mid samples over a temperature range of 80 to 300 K; (c) VOC/T curves of the two samples; (d) relationship between Rs and T under dark J-V (Insert is relationship curve between $ {\mathrm{l}}{\mathrm{n}}\;({R}_{{\mathrm{s}}}\cdot T) $ and 1000/T).

    图 8  样品 CIGS-ref, CIGS-top, CIGS-bot, CIGS-mid, CIGS-max (a)载流子浓度NCV与耗尽区宽度Wd的分布图及(b) 1/C2与外置偏压V的关系图

    Figure 8.  , The distribution plots of (a) carrier concentration NCV and the depletion zone width Wd and (b) the relationship between 1/C2 and external bias V of the CIGS-ref, CIGS-top, CIGS-bot, CIGS-mid, CIGS-max, respectively.

    图 9  (a) 样品CIGS-ref导纳谱; (b) 样品CIGS-mid导纳谱; (c) 样品CIGS-ref和CIGS-mid为经计算提取的1000/T和$ {\mathrm{l}}{\mathrm{n}}({\omega }_{0}/{T}^{2}) $的关系图和相关缺陷激活能; (d) 样品CIGS-ref和薄膜CIGS-mid为所对应缺陷的态密度

    Figure 9.  (a) CIGS-ref admittance spectrum of the sample; (b) CIGS-mid admittance spectra of the sample; (c) the CIGS-ref and CIGS-mid of the film are the calculated plots of 1000/T and $ {\mathrm{l}}{\mathrm{n}}({\omega }_{0}/{T}^{2}) $ and the associated defect activation energies; (d) the density of states of the defect corresponding to CIGS-ref and CIGS-mid.

    表 1  国内外主要CIGS研究机构的研究进展

    Table 1.  Research progress of major CIGS research institutions at home and abroad.

    衬底材料 效率/% 机构 方法
    钠钙玻璃 19.40 中国科学院 共蒸发
    钠钙玻璃 21.70 ZSW 共蒸发
    不锈钢 17.70 EMPA 共蒸发
    不锈钢 19.40 Miasolé 共溅射
    钠钙玻璃 15.80 河北大学 单靶溅射无硒化
    聚酰亚胺 20.80 EMPA 共蒸发
    钠钙玻璃 22.92 汉能 共蒸发
    钠钙玻璃 23.35 Solar Frontier 共蒸发
    注: ZSW: 德国巴登符腾堡太阳能与氢能源研究中心;
    EMPA: 瑞士联邦材料科学与技术实验室.
    DownLoad: CSV

    表 2  CIGS太阳电池详细结构表

    Table 2.  Detailed structure of CIGS solar cells.

    CIGS结构衬底低温层高温层缓冲层窗口层
    CIGS-refMo/MoCIGSCIGSCdSi-ZnO
    CIGS-topMo/MoCIGS/CGSCIGSCdSi-ZnO
    CIGS-midMo/MoCIGS/CGS/CIGSCIGSCdSi-ZnO
    CIGS-botMo/MoCGS/CIGSCIGSCdSi-ZnO
    CIGS-maxMo/MoCGSCIGSCdSi-ZnO
    DownLoad: CSV

    表 3  基于不同Ga梯度结构条件下制备的的CIGS太阳电池性能参数表

    Table 3.  Performance parameters of CIGS solar cells prepared under different Ga gradient structure conditions.

    样品 VOC/mV PCE/% FF/% JSC/(mA·cm–2)
    CIGS-ref 546 10.79 70.14 28.22
    CIGS-top 580 13.39 72.80 31.71
    CIGS-mid 614 15.04 70.21 34.81
    CIGS-bot 556 12.92 72.12 32.22
    CIGS-max 482 10.62 63.39 34.73
    DownLoad: CSV
  • [1]

    Cheng K, Shen X F, Liu J L, Liu X S, Du Z L 2021 Sol. Energy 217 70Google Scholar

    [2]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [3]

    Gao Q Q, Yuan S J, Zhou Z J, Kou D X, Zhou W H, Meng Y N, Qi Y F, Han L T, Wu S X 2022 Small 18 2203443Google Scholar

    [4]

    Wang Y H, Tu L H, Chang Y L , Lin S K, Lin T Y, Lai C H 2021 ACS Appl. Energy Mater. 4 11555Google Scholar

    [5]

    Hsu C H, Ho W H, Wei S Y, Lai C H 2017 Adv. Energy Mater. 7 1602571Google Scholar

    [6]

    Hsu C H, Su Y S, Wei S Y, Chen C H, Ho W H, Chang C, Wu Y H, Lin C J, Lai C H 2015 Prog. Photovolt. 23 1621Google Scholar

    [7]

    Dai W L, Gao Z R, Li J J, Qin S M, Wang R B, Xu H Y, Wang X Z, Gao C, Teng X Y, Zhang Y, Hao X J, Wang Y L, Yu W 2021 ACS Appl. Mater. Interfaces 13 49414Google Scholar

    [8]

    Wang Y H, Ho P H, Huang W C, Tu L H, Chang H F, Cai C H, Lai C H 2020 ACS Appl. Mater. Interfaces 12 28320Google Scholar

    [9]

    Kong Y F, Li J M, Ma Z Y, Chi Z, Xiao X D 2020 J. Mater. Chem. A. 8 9760Google Scholar

    [10]

    Hoang V Q, Jeon D H, Park H K, Kim S Y, Kim W H, Hwang D K, Lee J, Son D H, Yang K J, Kang J K, Jo W 2023 ACS Appl. Energy Mater. 6 12180Google Scholar

    [11]

    Giraldo S, Fonoll-Rubio R, Jehl Li-Kao Z, et al. 2020 Prog. Photovolt. 29 334Google Scholar

    [12]

    Wan X J, Yuan M Y, Zeng C H, Lin R X, Li D Y, Hong R J 2024 Sol. Energy 273 112510Google Scholar

    [13]

    Sun Y L, Qin S M, Ding D L, Gao H F, Zhou Q, Guo X Y, Gao C, Liu H X, Zhang Y, Yu W 2023 Chem. Eng. J. 455 140596Google Scholar

    [14]

    Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K 2021 Sol. Energy 227 13Google Scholar

    [15]

    Kim S T, Bhatt V, Kim Y C, Jeong H J, Yun J H, Jang J H 2022 J. Alloys Compd. 899 163301Google Scholar

    [16]

    Busacca A C, Rocca V, Curcio L, et al. 2014 International Conference on Renewable Energy Research and Application (ICRERA), IEEE Milwaukee, WI, USA, October 19–22, 2014 p964

    [17]

    Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S 2013 Appl. Phys. Lett. 103 143903Google Scholar

    [18]

    Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S C, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1900408Google Scholar

    [19]

    Zhao Y H, Yuan S J, Kou D X, Zhou Z J, Wang X S, Xiao H Q, Deng Y Q, Cui C C, Chang Q Q, Wu S X 2020 ACS Appl. Mater. 12 12717Google Scholar

    [20]

    Witte W, Abou-Ras D, Albe K, et al. 2015 Prog. Photovolt. 23 717Google Scholar

    [21]

    Venkatalaxmi A, Padmavathi B S, Amaranath T 2004 Fluid Dyn. Res. 35 229Google Scholar

    [22]

    Thompson C P, Chen L, Shafarman W N, Lee J, Fields S, Birkmire R W 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) Orleans, LA, USA, June 14–19, 2015 p1

    [23]

    Chantana J, Hironiwa D, Watanabe T, Teraji S, Kawamura K, Minemoto T 2015 Sol. Energy Mat. Sol. C. 133 223Google Scholar

    [24]

    Decock K, Khelifi S, Burgelman M 2011 Sol. Energy Mat. Sol. C. 95 1550Google Scholar

  • [1] Wu Shi-Man, Tao Si-Min, Ji Ai-Chuang, Guan Shao-Hang, Xiao Jian-Rong. Influence of selenization temperature on structure and optical band gap of MoSe2 thin film. Acta Physica Sinica, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [3] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [4] Tian Cong-Sheng, Chen Xin-Liang, Liu Jie-Ming, Zhang De-Kun, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan. Influence of H2 introduction on wide-spectrum Mg and Ga co-doped ZnO transparent conductive thin films. Acta Physica Sinica, 2014, 63(3): 036801. doi: 10.7498/aps.63.036801
    [5] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [6] Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Gao Yan-Qing, Zhao Shou-Ren, Wang Shan-Li, Chu Jun-Hao. Effects of different substrates and CdCl2 treatment on the properties of CdS thin films deposited by magnetron sputtering. Acta Physica Sinica, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [7] Li Xiao-Na, Zheng Yue-Hong, Li Sheng-Bin, Dong Chuang. Fe3Si8M ternary alloy thin films prepared by magnetron sputtering. Acta Physica Sinica, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [8] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [9] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [10] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [11] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [12] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [13] Di Guo-Qing. Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering. Acta Physica Sinica, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [15] Nano-β-FeSi2/a-Si multi-layered structure prepared by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [16] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [17] Zhang Ren-Gang, Wang Bao-Yi, Zhang Hui, Ma Chuang-Xin, Wei Long. The properties of the as-sputtered ZnO films under different deposition parameters after sulfidation. Acta Physica Sinica, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [18] Deng Lian-Wen, Jiang Jian-Jun, Feng Ze-Kun, Zhang Xiu-Cheng, He Hua-Hui. Microwave electromagnetic characteristics of FeCoBSiO2 nano-granular magnetic films. Acta Physica Sinica, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [19] Mu Zong-Xin, Li Guo-Qing, Che De-Liang, Huang Kai-Yu, Liu Cui. Investigation of the model of the discharge properties of the unbalanced magnetron sputtering system. Acta Physica Sinica, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
Metrics
  • Abstract views:  1064
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2024
  • Accepted Date:  17 July 2024
  • Available Online:  25 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回