Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of proton cumulative radiation on saturation output in CMOS image sensors

PENG Zhigang BAI Haojie LIU Fang LI Yang HE Huan LI Pei HE Chaohui LI Yonghong

Citation:

Effect of proton cumulative radiation on saturation output in CMOS image sensors

PENG Zhigang, BAI Haojie, LIU Fang, LI Yang, HE Huan, LI Pei, HE Chaohui, LI Yonghong
cstr: 32037.14.aps.74.20241352
PDF
HTML
Get Citation
  • Complementary metal oxide semiconductor (CMOS) image sensors have been increasingly widely used in the field of radiation environments due to their numerous advantages, and their radiation effects have also attracted much attention. Some experimental studies have shown that the saturation output of CMOS image sensors decreases after irradiation, while others have reported that it increases. In this work, the further in-depth research on the inconsistent results is conducted based on the proton irradiation experiments and TCAD simulations, and the degradation mechanism in full well capacity, conversion factor, and saturation output of the 4T pinned photodiode (PPD) CMOS image sensors due to proton cumulative radiation effects are also analyzed. In experiments, the sensors are irradiated by 12 MeV and 60 MeV protons with a fluence up to 2× 1012 cm–2. The sensors are unbiased during irradiation. The experimental results show that proton irradiation at 12 MeV and 60 MeV result in an increase of 8.2% and 7.3% in conversion factor, respectively, and a decrease of 7.3% and 3.8% in full well capacity, respectively. The saturation output shows no significant change trend under 12 MeV proton irradiation, but increases by 3% under 60 MeV proton irradiation. In the TCAD simulation, a three-dimensional 4T PPD pixel model is constructed. A simulation method that combines the trap and gamma radiation model in TCAD with the mathematical model of minority carrier lifetime is used to simulate global and local cumulative proton irradiation in order to analyze the degradation mechanism. It is proposed that the degradation of saturation output at the pixel level is determined by the full well capacity of PPD, the physical characteristics of the reset transistor and the capacitance of floating diffusion, but they have opposite effects. Proton irradiation leads to the accumulation of oxide-trapped positive charges in the shallow trench isolation on both sides of PPD, resulting in the formation of leakage current path in silicon, thereby reducing the full well capacity. A decrease in full well capacity leads to a decrease in saturation output. While, the radiation effect of the reset transistor causes the potential of floating diffusion (FD) to increase during the FD reset phase, further leading to an increase in saturation output. The irradiation causes the capacitance of the floating diffusion to decrease, resulting in an increase in conversion factor and consequently increasing the saturation output. The difference in radiation sensitivity among the three influence factors at the pixel level may result in a decrease or increase in saturation output with proton fluence increasing. The above work comprehensively reveals and analyzes the mechanisms of degradation in full well capacity, conversion factor and saturation output after irradiation, and the research results have certain guiding significance for analyzing the radiation damage to CMOS image sensors.
      Corresponding author: LI Yonghong, yonghongli@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005159).
    [1]

    王祖军, 刘静, 薛院院, 何宝平, 姚志斌, 盛江坤 2017 半导体光电 38 1

    Wang Z J, Liu J, Xue Y Y, He B P, Yao Z B, Sheng J K 2017 Semiconductor Optoelectronics 38 1

    [2]

    Goiffon V, Estribeau M, Magnan P 2009 IEEE Trans. Electron Devices 56 2594Google Scholar

    [3]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010 IEEE Trans. Nucl. Sci. 57 3101

    [4]

    Le Roch A, Virmontois C, Paillet P, Belloir J M, Rizzolo S, Marcelot O, Dewitte H, Van Uffelen M, Casellas L M, Magnan P, Goiffon V 2020 IEEE Trans. Nucl. Sci. 67 1241Google Scholar

    [5]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 056102Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102Google Scholar

    [6]

    王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发 2016 物理学报 65 024212Google Scholar

    Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L, He C F 2016 Acta Phys. Sin. 65 024212Google Scholar

    [7]

    Rizzolo S, Goiffon V, Estribeau M, Paillet P, Marcandella C, Durnez C, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 84Google Scholar

    [8]

    汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅 2015 强激光与粒子束 27 210Google Scholar

    Wang B, Li Y D, Guo Q, Wen L, Sun J, Wang F, Zhang X Y, Ma L Y 2015 High Power Laser Part. Beams 27 210Google Scholar

    [9]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅 2015 物理学报 64 084209Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ren D Y, Zeng J Z, Ma L Y 2015 Acta Phys. Sin. 64 084209Google Scholar

    [10]

    Fu J, Feng J, Li Y D, Guo Q, Wen L, Zhou D, Zhang X, Cai Y L, Liu B K 2021 Radiat. Phys. Chem. 182 109384Google Scholar

    [11]

    Wang Z J, Xue Y Y, Guo X Q, Bian J Y, Yao Z B, He B P, Ma W Y, Sheng J K, Dong G T, Liu Y 2018 Nucl. Instrum. Methods A 895 35Google Scholar

    [12]

    Goiffon V, Estribeau M, Marcelot O, Cervantes P, Magnan P, Gaillardin M, Virmontois C, Martin-Gonthier P, Molina R, Corbiere F, Girard S, Paillet P, Marcandella C 2012 IEEE Trans. Nucl. Sci. 59 2878Google Scholar

    [13]

    Wang Z J, Ma W Y, Huang S Y, Yao Z B, Liu M B, He B P, Liu J, Sheng J K, Xue Y 2016 AIP Adv. 6 035205Google Scholar

    [14]

    Meng X, Stefanov K D, Holland A D 2020 IEEE Trans. Nucl. Sci. 67 1107Google Scholar

    [15]

    Virmontois C, Durnez C, Estribeau M, Cervantes P, Avon B, Goiffon V, Magnan P, Materne A, Bardoux A 2017 IEEE Trans. Nucl. Sci. 64 38Google Scholar

    [16]

    Lai S K, Wang Z J, Huang G, Xue Y Y, Nie X, Tang N, Yan S X, Wang X H 2023 Nucl. Instrum. Methods A 1050 168069Google Scholar

    [17]

    杨勰, 霍勇刚, 王祖军, 尚爱国, 薛院院, 贾同轩 2022 光学学报 42 0723002Google Scholar

    Yang X, Huo Y G, Wang Z J, Shang A G, Xue Y Y, Jia T X 2022 Acta Opt. Sin. 42 0723002Google Scholar

    [18]

    Peng Z G, Fu Y J, Wei Y, Zuo Y H, Niu S L, Zhu J H, Guo Y X, Liu F, Li P, He C H, Li Y H 2024 AIP Advances 14 015211Google Scholar

    [19]

    Wang Z M, Chen W, Qiu M T, Yan Y H, Zhang H, Wang M W, Wang B C, Yang Y, Wang D, Liu W L, Wang M C, Lv W, Zhao M T, Zhao C, Wei C Y, Yao H J, Zheng S X, Wang X W, Guan X L, Xing Q Z, Cheng C, Du T B, Zhang H Y, Lei Y, Wang D, Du C T, Ma P F, Liu X Y, Li Y, Ye W B, Yu X D 2022 Nucl. Instrum. Methods A 1027 166283Google Scholar

    [20]

    Khan U, Sarkar M 2018 IEEE Trans. Electron Devices 65 2892Google Scholar

    [21]

    Wang Z J, Xue Y Y, Wang Z M, Chen W, Yin L Y, Wang X H, Nie X, Lai S K, Huang G, Wang M C, Ding L L, He B P, Ma W Y, Gou S L 2024 Nucl. Instrum. Methods A 1058 168784Google Scholar

    [22]

    Petrosyants K O, Kozhukhov M V 2016 IEEE Trans. Nucl. Sci. 63 2016Google Scholar

    [23]

    Poivey C, Hopkinson G 2009 ESA—EPFL Space Center Workshop June, 2009 p9

    [24]

    Wang C H, Bai X Y, Chen W, Yang S C, Liu Y, Jin X M, Ding L L 2015 Nucl. Instrum. Methods A 796 108Google Scholar

    [25]

    Gregory B L, Gwyn C W 1970 IEEE Trans. Nucl. Sci. 17 325Google Scholar

    [26]

    Marshall C J , Marshall P W 1999 Nuclear and Space Radiation Effects Conference, Short Course Norfolk, Virginia, July 12–16, 1999 p50

    [27]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [28]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941Google Scholar

    [29]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332Google Scholar

  • 图 1  (a) CIS芯片及图像采集卡; (b) 测试系统的程控暗箱; (c) 质子辐照实验示意图

    Figure 1.  (a) CIS and image acquisition card; (b) the dark box of test system; (c) schematic diagram of CIS proton irradiation experiment setup.

    图 2  系统增益随质子注量变化

    Figure 2.  Overall system gain versus the proton fluence.

    图 3  (a) 平均输出信号; (b) 满阱容量随质子注量变化

    Figure 3.  (a) Mean signal level; (b) full well capacity versus proton fluence.

    图 4  平均饱和输出随质子注量变化

    Figure 4.  Mean saturation outputs versus the proton fluence.

    图 5  TCAD中建立的4T PPD像元模型 (a) 三维模型, STI和PMD略去以便于展示; (b) 沿(a)图X = 1.2 μm的横截面

    Figure 5.  The 4T PPD CIS pixel model built in TCAD: (a) 3D model, STI, and PMD removed for visualization; (b) 2D cross section taken along the X = 1.2 μm surface in (a).

    图 6  仿真时序及FD电势输出

    Figure 6.  Simulation driving timings and the potential output of FD.

    图 7  4T PPD像元输出电压随光照强度变化

    Figure 7.  Output variation of the 4T PPD CIS model with light intensity.

    图 8  全局质子辐照前后氧化物中陷阱正电荷分布 (a) 辐照前; (b) 质子注量1.0×1012 cm–2

    Figure 8.  Distribution of trapped positive charges in the oxide: (a) Before irradiation; (b) proton fluence of 1.0×1012 cm–2.

    图 9  12 MeV全局质子辐照 (a) PPD内电子数量; (b) 满阱容量

    Figure 9.  Global irradiation simulation by 12 MeV protons: (a) Total electron count within the PPD; (b) FWC.

    图 10  辐照前后PPD两侧氧化物陷阱正电荷和电子浓度分布 (a) 辐照前陷阱正电荷; (b) 辐照后陷阱正电荷; (c) 辐照前电子浓度; (d) 辐照后电子浓度

    Figure 10.  Distribution of oxide-trapped positive charges in STI on both sides of the PPD during FD reset stage: (a) Positive charges before irradiation; (b) positive charges after irradiation; (c) electron concentration distribution before irradiation; (d) electron concentration distribution after irradiation.

    图 11  12 MeV全局质子辐照 (a) FD电势; (b) 饱和输出

    Figure 11.  Global irradiation simulation by 12 MeV protons: (a) FD potential; (b) saturation output.

    图 12  质子局部辐照(Y > 2.1 μm) (a) 12 MeV质子辐照PPD内电子数量; (b) 满阱容量

    Figure 12.  Local irradiation (Y > 2.1 μm): (a) Total electron count within the PPD irradiated by 12 MeV protons; (b) FWC.

    图 13  质子局部辐照(Y > 2.1 μm) (a) 12 MeV质子辐照FD电势; (b) 饱和输出

    Figure 13.  Local irradiation (Y > 2.1 μm): (a) FD potential irradiated by 12 MeV protons; (b) saturation output.

    图 14  质子局部辐照(Y < 2.1 μm) (a) 12 MeV质子辐照PPD内电子数量; (b) 满阱容量

    Figure 14.  Local irradiation (Y < 2.1 μm): (a) Total electron count within the PPD irradiated by 12 MeV protons; (b) FWC.

    图 15  质子局部辐照(Y < 2.1 μm) (a) 12 MeV质子辐照FD电势变化; (b) 饱和输出变化

    Figure 15.  Local irradiation (Y < 2.1 μm): (a) FD potential irradiated by 12 MeV protons; (b) saturation output.

    图 16  质子局部辐照(Y < 2.1 μm)前后浮置扩散区耗尽层厚度 (a) 辐照前; (b) 12 MeV质子辐照后; (c) 60 MeV质子辐照后

    Figure 16.  Depletion region of FD region before and after local proton irradiation simulation (Y < 2.1 μm): (a) Before irradiation; (b) after irradiation by 12 MeV protons; (b) after irradiation by 60 MeV protons.

    图 17  60 MeV质子局部辐照(Y < 2.1 μm) TG下方沟道和浮置扩散区的电子浓度

    Figure 17.  Electron density in the channel below TG and FD region after local proton irradiation simulation (Y < 2.1 μm).

    表 1  辐照参数

    Table 1.  Irradiation parameters.

    CIS编号质子能量/MeV最大质子注量/cm–2DDD/(TeV·g–1)TID/krad(Si)
    CIS_1122.0×101217638962
    CIS_2, 3, 4602.0×10128286275
    DownLoad: CSV

    表 2  12 MeV和60 MeV质子等效计算结果

    Table 2.  Equivalent results for 12 MeV and 60 MeV protons.

    质子能量
    /MeV
    质子注量
    /(1011cm–2)
    等效中子注量
    /(1011 cm–2)
    等效TID
    /krad(Si)
    12 1.0 3.0 48.1
    4.0 12.0 192.3
    7.0 21.0 336.6
    10.0 30.0 480.8
    60 1.0 1.0 13.7
    4.0 4.0 55.1
    7.0 7.0 96.4
    10.0 10.0 137.4
    DownLoad: CSV
  • [1]

    王祖军, 刘静, 薛院院, 何宝平, 姚志斌, 盛江坤 2017 半导体光电 38 1

    Wang Z J, Liu J, Xue Y Y, He B P, Yao Z B, Sheng J K 2017 Semiconductor Optoelectronics 38 1

    [2]

    Goiffon V, Estribeau M, Magnan P 2009 IEEE Trans. Electron Devices 56 2594Google Scholar

    [3]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010 IEEE Trans. Nucl. Sci. 57 3101

    [4]

    Le Roch A, Virmontois C, Paillet P, Belloir J M, Rizzolo S, Marcelot O, Dewitte H, Van Uffelen M, Casellas L M, Magnan P, Goiffon V 2020 IEEE Trans. Nucl. Sci. 67 1241Google Scholar

    [5]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 056102Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102Google Scholar

    [6]

    王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发 2016 物理学报 65 024212Google Scholar

    Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L, He C F 2016 Acta Phys. Sin. 65 024212Google Scholar

    [7]

    Rizzolo S, Goiffon V, Estribeau M, Paillet P, Marcandella C, Durnez C, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 84Google Scholar

    [8]

    汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅 2015 强激光与粒子束 27 210Google Scholar

    Wang B, Li Y D, Guo Q, Wen L, Sun J, Wang F, Zhang X Y, Ma L Y 2015 High Power Laser Part. Beams 27 210Google Scholar

    [9]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅 2015 物理学报 64 084209Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ren D Y, Zeng J Z, Ma L Y 2015 Acta Phys. Sin. 64 084209Google Scholar

    [10]

    Fu J, Feng J, Li Y D, Guo Q, Wen L, Zhou D, Zhang X, Cai Y L, Liu B K 2021 Radiat. Phys. Chem. 182 109384Google Scholar

    [11]

    Wang Z J, Xue Y Y, Guo X Q, Bian J Y, Yao Z B, He B P, Ma W Y, Sheng J K, Dong G T, Liu Y 2018 Nucl. Instrum. Methods A 895 35Google Scholar

    [12]

    Goiffon V, Estribeau M, Marcelot O, Cervantes P, Magnan P, Gaillardin M, Virmontois C, Martin-Gonthier P, Molina R, Corbiere F, Girard S, Paillet P, Marcandella C 2012 IEEE Trans. Nucl. Sci. 59 2878Google Scholar

    [13]

    Wang Z J, Ma W Y, Huang S Y, Yao Z B, Liu M B, He B P, Liu J, Sheng J K, Xue Y 2016 AIP Adv. 6 035205Google Scholar

    [14]

    Meng X, Stefanov K D, Holland A D 2020 IEEE Trans. Nucl. Sci. 67 1107Google Scholar

    [15]

    Virmontois C, Durnez C, Estribeau M, Cervantes P, Avon B, Goiffon V, Magnan P, Materne A, Bardoux A 2017 IEEE Trans. Nucl. Sci. 64 38Google Scholar

    [16]

    Lai S K, Wang Z J, Huang G, Xue Y Y, Nie X, Tang N, Yan S X, Wang X H 2023 Nucl. Instrum. Methods A 1050 168069Google Scholar

    [17]

    杨勰, 霍勇刚, 王祖军, 尚爱国, 薛院院, 贾同轩 2022 光学学报 42 0723002Google Scholar

    Yang X, Huo Y G, Wang Z J, Shang A G, Xue Y Y, Jia T X 2022 Acta Opt. Sin. 42 0723002Google Scholar

    [18]

    Peng Z G, Fu Y J, Wei Y, Zuo Y H, Niu S L, Zhu J H, Guo Y X, Liu F, Li P, He C H, Li Y H 2024 AIP Advances 14 015211Google Scholar

    [19]

    Wang Z M, Chen W, Qiu M T, Yan Y H, Zhang H, Wang M W, Wang B C, Yang Y, Wang D, Liu W L, Wang M C, Lv W, Zhao M T, Zhao C, Wei C Y, Yao H J, Zheng S X, Wang X W, Guan X L, Xing Q Z, Cheng C, Du T B, Zhang H Y, Lei Y, Wang D, Du C T, Ma P F, Liu X Y, Li Y, Ye W B, Yu X D 2022 Nucl. Instrum. Methods A 1027 166283Google Scholar

    [20]

    Khan U, Sarkar M 2018 IEEE Trans. Electron Devices 65 2892Google Scholar

    [21]

    Wang Z J, Xue Y Y, Wang Z M, Chen W, Yin L Y, Wang X H, Nie X, Lai S K, Huang G, Wang M C, Ding L L, He B P, Ma W Y, Gou S L 2024 Nucl. Instrum. Methods A 1058 168784Google Scholar

    [22]

    Petrosyants K O, Kozhukhov M V 2016 IEEE Trans. Nucl. Sci. 63 2016Google Scholar

    [23]

    Poivey C, Hopkinson G 2009 ESA—EPFL Space Center Workshop June, 2009 p9

    [24]

    Wang C H, Bai X Y, Chen W, Yang S C, Liu Y, Jin X M, Ding L L 2015 Nucl. Instrum. Methods A 796 108Google Scholar

    [25]

    Gregory B L, Gwyn C W 1970 IEEE Trans. Nucl. Sci. 17 325Google Scholar

    [26]

    Marshall C J , Marshall P W 1999 Nuclear and Space Radiation Effects Conference, Short Course Norfolk, Virginia, July 12–16, 1999 p50

    [27]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [28]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941Google Scholar

    [29]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332Google Scholar

  • [1] Zhu Wen-Lu, Guo Hong-Xia, Li Yang-Fan, Ma Wu-Ying, Zhang Feng-Qi, Bai Ru-Xue, Zhong Xiang Li, Li Ji-Fang, Cao Yan-Hui, Ju An-An. Research on Total Ionizing Dose Effect of double-trench SiC MOSFET. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241641
    [2] Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi. Total X-ray dose effect on graphene field effect transistor. Acta Physica Sinica, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [3] Zhang Shu-Hao, Yuan Zhang-Yi-An, Qiao Ming, Zhang Bo. Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS. Acta Physica Sinica, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [4] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [5] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [6] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [7] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [8] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [9] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [10] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [11] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [16] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [17] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [18] Wang Si-Hao, Lu Qing, Wang Wen-Hua, An Xia, Huang Ru. The improvement on total ionizing dose (TID) effects of the ultra-deep submicron MOSFET featuring delta doping profiles. Acta Physica Sinica, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [19] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, ZHOU HUI, GONG JIAN-CHENG, HAN FU-BIN, GUAN YING, WU GUO-RONG. STUDY OF RELATIVE DOSE-ENHANCEMENT EFFECTS ON CMOS DEVICE IRRADIATED BY STEADY-STATE AND TRANSIENT PULSED X-RAYS. Acta Physica Sinica, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
Metrics
  • Abstract views:  328
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2024
  • Accepted Date:  05 December 2024
  • Available Online:  10 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回