Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and implementation of high-performance PbSe infrared focal plane array detectors based on surface passivation and through-hole technologies

LYU Quanjiang LI Rongfan HU Tianxi WU Yong LIU Junlin

Citation:

Design and implementation of high-performance PbSe infrared focal plane array detectors based on surface passivation and through-hole technologies

LYU Quanjiang, LI Rongfan, HU Tianxi, WU Yong, LIU Junlin
cstr: 32037.14.aps.74.20241761
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Infrared focal plane array (IRFPA) detector, a key research focus in next-generation infrared detection technology, plays a crucial role in optoelectronic sensing. Here is the report on the integration and reliability of a PbSe-based IRFPA employing a row-column scanning readout architecture. This design features a surface passivation layer and through-hole structures to ensure robust electrical connectivity, thereby enhancing both stability and performance. The detector, with dimensions of 3.5 mm × 3.5 mm, a pixel size of 200 μm × 100 μm, and a pixel pitch of 200 μm, demonstrates structural integrity validated by electro-thermal simulations. At room temperature, the pixel-level and imaging assessments reveal an average detectivity value of 9.86×109 Jones and a responsivity value of 1.03 A/W, with a 100% effective pixel yield. Remarkably, the device retains high stability, exhibiting only a 3.6% performance decline after 150-day air exposure, which is attributed to the protective effect of the passivation layer. Infrared imaging under different light intensities shows pronounced contrast, confirming the sensitivity of the detector to illumination gradients. These results provide critical technical insights and a theoretical framework for advancing high-performance, stable PbSe-based IRFPA detectors.
      Corresponding author: LYU Quanjiang, lvquanjiang@ujs.edu.cn ; LIU Junlin, liujunlin@ujs.edu.cn
    • Funds: Project supported by the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. JSSCTD202146).
    [1]

    袁继俊 2006 激光与红外 36 1009Google Scholar

    Yuan J J 2006 Laser Infrared 36 1009Google Scholar

    [2]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [3]

    Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001

    [4]

    Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304Google Scholar

    [5]

    Rogalski A 2012 Prog. Quantum Electron. 36 342Google Scholar

    [6]

    Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133Google Scholar

    [7]

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]Google Scholar

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)Google Scholar

    [8]

    Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459Google Scholar

    [9]

    Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955Google Scholar

    [10]

    Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640Google Scholar

    [11]

    Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487Google Scholar

    [12]

    Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952Google Scholar

    [13]

    Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287

    [14]

    Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441

    [15]

    Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110Google Scholar

    [16]

    Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430

    [17]

    Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895Google Scholar

    [18]

    Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564Google Scholar

    [19]

    Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1Google Scholar

    [20]

    Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578Google Scholar

    [21]

    Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541Google Scholar

    [22]

    陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980Google Scholar

    Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980Google Scholar

    [23]

    Moss T S 1961 J. Phys. Chem. Solids 22 117Google Scholar

    [24]

    Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374Google Scholar

    [25]

    Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540Google Scholar

    [26]

    Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254Google Scholar

    [27]

    袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110Google Scholar

    Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110Google Scholar

    [28]

    Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499Google Scholar

    [29]

    Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894Google Scholar

    [30]

    Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160Google Scholar

    [31]

    Reiss P, Protiere M, Li L 2009 Small 5 154Google Scholar

    [32]

    Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209Google Scholar

    [33]

    杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53Google Scholar

    Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53Google Scholar

    [34]

    Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977Google Scholar

    [35]

    GB/T 17444–2013 红外焦平面阵列参数测试方法 2014

    GB/T 17444–2013 Infraction flat array parameter test method 2014

    [36]

    Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659Google Scholar

    [37]

    Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772Google Scholar

  • 图 1  探测器最高温度随电压变化曲线, 插图为3 V工作偏压下的温度分布

    Figure 1.  Maximum temperature of detector as a function of bias voltage, with insets representing temperature distribution under 3 V working bias voltage

    图 2  探测器最高温度随时间变化曲线, 插图为300 s时的温度分布

    Figure 2.  Maximum temperature of detector as a function of time, with insets representing temperature distribution at 300 seconds

    图 3  PbSe IRFPA探测器制备流程图

    Figure 3.  Preparation process of PbSe IRFPA detector.

    图 4  (a) PbSe IRFPA探测器整体图像; (b) 金相显微镜下局部放大图

    Figure 4.  (a) Physical image of PbSe IRFPA detector; (b) local magnified view under metallographic microscope.

    图 5  不同偏置电压下的电流变化 (a) 光电流和暗电流; (b) 光生电流; (c) 比探测率和响应率

    Figure 5.  Current varies with different bias voltages: (a) Light current and dark current; (b) photogenerated current; (c) specific detectivity and responsivity.

    图 6  光电性能随光功率密度变化 (a) 光生电流; (b) 量子效率; (c) 比探测率和响应率

    Figure 6.  Photoelectric response varies with light intensity: (a) Photogenerated current; (b) quantum efficiency; (c) specific detectivity and responsivity.

    图 7  不同入射角下的探测性能 (a) 比探测率分布; (b) 响应率分布

    Figure 7.  Photoelectric response at different incident angles: (a) Specific detectivity distribution; (b) responsivity distribution.

    图 8  PbSe IRFPA探测器0和150天性能对比 (a) 光功率密度为0.199 mW/mm2下的I-t曲线; (b) 不同光功率密度下的比探测率对比; (c) 不同光功率密度下响应率对比

    Figure 8.  Comparison of 0 and 150 days performance of PbSe IRFPA detector: (a) Current varies time under 0.199 mW/mm2; (b) comparison of specific detectivity under different light intensity; (c) comparison of responsivity under different light intensity.

    图 9  PbSe IRFPA探测器像元暗电阻分布(a) 和光电阻分布(b)

    Figure 9.  Dark resistance (a) and light resistance (b) distribution of PbSe IRFPA detector.

    图 10  PbSe IRFPA探测器的成像性能 (a) 比探测率分布; (b) 响应率分布

    Figure 10.  Imaging performance of PbSe IRFPA detector: (a) Specific detectivity distribution; (b) responsivity distribution.

    图 11  PbSe IRFPA探测器成像装置示意图

    Figure 11.  Schematic diagram of PbSe IRFPA detector imaging device.

    图 12  PbSe IRFPA探测器红外成像随光功率密度变化 (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2

    Figure 12.  Infrared imaging results of PbSe IRFPA detector vary with light density: (a) 0 mW/mm2; (b) 0.199 mW/mm2; (c) 1.69 mW/mm2; (d) 3.28 mW/mm2; (e) 6.17 mW/mm2; (f) 11.54 mW/mm2.

  • [1]

    袁继俊 2006 激光与红外 36 1009Google Scholar

    Yuan J J 2006 Laser Infrared 36 1009Google Scholar

    [2]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [3]

    Karim A, Andersson J Y 2013 IOP Conference Series: Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001

    [4]

    Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304Google Scholar

    [5]

    Rogalski A 2012 Prog. Quantum Electron. 36 342Google Scholar

    [6]

    Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133Google Scholar

    [7]

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese) [张国栋, 朱庆帅, 薛奔驰, 李彦臻, 石康昊, 邱继军 2024 红外 45 1]Google Scholar

    Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024 Infrared 45 1 (in chinese)Google Scholar

    [8]

    Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459Google Scholar

    [9]

    Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955Google Scholar

    [10]

    Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640Google Scholar

    [11]

    Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384 132487Google Scholar

    [12]

    Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156 110952Google Scholar

    [13]

    Beystrum T, R Himoto R, Jacksen N, Sutton M 2004 Infrared Technology and Applications XXX Orlando, United States, April 12–16, 2004 p287

    [14]

    Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005 Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441

    [15]

    Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15 110Google Scholar

    [16]

    Green K, Yoo S S, Kauffman C 2014 Infrared Technology and Applications XL Baltimore, United States, May 5–9, 2014 p430

    [17]

    Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895Google Scholar

    [18]

    Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci. -Mater. Electron. 33 5564Google Scholar

    [19]

    Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1Google Scholar

    [20]

    Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584 152578Google Scholar

    [21]

    Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541Google Scholar

    [22]

    陈岩松, 任梓洋, 徐翰纶, 朱海明, 王垚, 吴惠桢 2022 红外与毫米波学报 41 980Google Scholar

    Chen Y S, Ren Z Y, Xu H L, Zhu H M, Wang Y, Wu H Z 2022 J. Infrared Millim. Waves 41 980Google Scholar

    [23]

    Moss T S 1961 J. Phys. Chem. Solids 22 117Google Scholar

    [24]

    Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024 J. Mater. Res. Technol. 31 3374Google Scholar

    [25]

    Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lü Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163 107540Google Scholar

    [26]

    Huan Z Y, Lü Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370 115254Google Scholar

    [27]

    袁愿林, 姚昌胜, 王果, 陆敏 2012 固体电子学研究与进展 32 110Google Scholar

    Yuan Y L, Yao C S, Wang G, Lu M 2012 Res. Prog. SSE 32 110Google Scholar

    [28]

    Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6 e12499Google Scholar

    [29]

    Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894Google Scholar

    [30]

    Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160Google Scholar

    [31]

    Reiss P, Protiere M, Li L 2009 Small 5 154Google Scholar

    [32]

    Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209Google Scholar

    [33]

    杨丹, 王登魁, 方铉, 房丹, 杨丽, 项超, 李金华, 王晓华 2023 激光与光电子学进展 60 53Google Scholar

    Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023 Laser Optoelectron. Prog. 60 53Google Scholar

    [34]

    Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135 104977Google Scholar

    [35]

    GB/T 17444–2013 红外焦平面阵列参数测试方法 2014

    GB/T 17444–2013 Infraction flat array parameter test method 2014

    [36]

    Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022 Sci. Bull. 67 1659Google Scholar

    [37]

    Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022 Adv. Mater. 34 2107772Google Scholar

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [3] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [6] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [7] Zhang Xiao-Ling, Si Le-Fei, Meng Qing-Duan, Lü Yan-Qiu, Si Jun-Jie. Structural model of InSb IRFPAs including underfill curing process. Acta Physica Sinica, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [8] Zhou Xiao-Feng, Qi Zu-Min, Luo Xiang-Qian, Liu Chang-An, Zhu Jian-Hui, Wang Ze-Hua, Zhang Yi, Zi Yan-Yong. A method to diverge reflected beam uniformly using cube-corner retroreflector array with dihedral angle tolerances. Acta Physica Sinica, 2017, 66(8): 084201. doi: 10.7498/aps.66.084201
    [9] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [11] Li Jia-Kun, Wang Xia, Jin Wei-Qi, Zhang Xu. Equivalent-measurement evaluation method of minimum resolvable gas concentration. Acta Physica Sinica, 2015, 64(16): 160701. doi: 10.7498/aps.64.160701
    [12] Zhang Xiao-Ling, Meng Qing-Duan, Zhang Li-Wen, Geng Dong-Feng, Lü Yan-Qiu. Deformation modeling of InSb IRFPAs under liquid nitrogen shock. Acta Physica Sinica, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [13] Meng Qing-Duan, Yu Qian, Zhang Li-Wen, Lü Yan-Qiu. Mechanical parameters selection in InSb focal plane array detector normal direction. Acta Physica Sinica, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [14] Meng Qing-Duan, Zhang Xiao-Ling, Zhang Li-Wen, Lü Yan-Qiu. Structural modeling of 128× 128 InSb focal plane array detector. Acta Physica Sinica, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [15] Jiang Xing-Kai, Zhang Qing-Chuan, Shi Hai-Tao, Mao Liang, Cheng Teng, Wu Xiao-Ping. Analysis of theoretical model of thermal infrared imager based on the substrate-free focal plane array. Acta Physica Sinica, 2011, 60(5): 054401. doi: 10.7498/aps.60.054401
    [16] Cai Chun-Feng, Wu Hui-Zhen, Si Jian-Xiao, Sun Yan, Dai Ning. Mid-infrared photoluminescence of PbSe/PbSrSe multiple quantum wells grown by molecular beam epitaxy. Acta Physica Sinica, 2009, 58(5): 3560-3564. doi: 10.7498/aps.58.3560
    [17] Cheng Teng, Zhang Qing-Chuan, Chen Da-Peng, Wu Xiao-Ping, Shi Hai-Tao, Gao Jie. Performance analysis of the substrate-free focal plane array in infrared imaging. Acta Physica Sinica, 2009, 58(2): 852-859. doi: 10.7498/aps.58.852
    [18] Xiao Fa-Jun, Zhang Peng, Liu Sheng, Zhao Jian-Lin. Coherent interactions between discrete spatial solitons in light-induced planar waveguide arrays. Acta Physica Sinica, 2008, 57(4): 2529-2536. doi: 10.7498/aps.57.2529
    [19] Xiong Zhi_Ming, Zhang Qing_Chuan, Chen Da_Peng, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [20] Miao Zheng-Yu, Zhang Qing-Chuan, Chen Da-Peng, Wu Xiao-Ping, Li Chao-Bo, Guo Zhe-Ying, Dong Feng-Liang, Xiong Zhi-Ming. Bi-material mircocantilever array room-temperature IR imaging. Acta Physica Sinica, 2006, 55(7): 3208-3214. doi: 10.7498/aps.55.3208
Metrics
  • Abstract views:  387
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2024
  • Accepted Date:  27 February 2025
  • Available Online:  21 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回