Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of bistatic radar cross section reduction metasurface based on convolutional neural networks

ZHU Shunkai YUAN Fang HU Kai PI Taotao ZHU Xicheng LI Cheng

Citation:

Design of bistatic radar cross section reduction metasurface based on convolutional neural networks

ZHU Shunkai, YUAN Fang, HU Kai, PI Taotao, ZHU Xicheng, LI Cheng
cstr: 32037.14.aps.74.20250109
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Radar cross section (RCS), a crucial physical quantity that characterizes the backscattering intensity of targets under radar illumination, is the primary metric for assessing stealth capabilities. With the development of radar detection technologies, RCS reduction has become a forefront research topic in radar stealth, aiming to minimize target detectability. With the maturity of radar networking technology, the bistatic radar RCS reduction is becoming increasingly important in future electromagnetic stealth countermeasures compared with the monostatic radar RCS reduction. Artificial electromagnetic metasurfaces have introduced innovative technical approaches for realizing the bistatic radar RCS reduction. However, current metasurface designs still face challenges related to inefficiency and suboptimal performance, mainly due to the time-consuming nature of large-scale array optimization and the global extremum characteristics of bistatic radar RCS reduction. To overcome these limitations, this study proposes a few-shot convolutional neural network (CNN)-based approach, which achieves uniform full-space radar echo scattering by directionally optimizing metasurface phase distributions, thereby enabling effective bistatic radar RCS reduction. This approach integrates convolutional feature extraction, residual enhancement, and fully connected optimization modules with a customized loss function to efficiently capture the complex multidimensional relationships between diffuse reflection phases and the full-space RCS extrema. Theoretical calculations, full-wave simulations, and experimental tests show that the metasurface designed with this approach can achieve over 10 dB of Bistatic Radar RCS reduction in a frequency range from 7.26 GHz to 10.74 GHz. The method also ensures uniform diffuse reflection across the full space for various incidence angles (30°, 45°, 60°). Compared with traditional optimization algorithms, this method enhances RCS reduction by 17.2% while significantly improving computational efficiency. This approach provides a promising new technical paradigm for achieving full-space electromagnetic stealth in advanced weapon systems.
      Corresponding author: YUAN Fang, 13379260913@163.com ; LI Cheng, licheng@nudt.edu.cn
    • Funds: Project supported by the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20240991) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62401596).
    [1]

    Rao G A, Mahulikar S P 2002 Aeronaut. J. 106 629Google Scholar

    [2]

    Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd Ed.) (Reston: AIAA) pp8–56

    [3]

    Westwick P 2019 Stealth: The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42

    [4]

    Singh H, Antony S, Jha R M 2016 Plasma-based Radar Cross Section Reduction (Singapore: Springer) pp1–46

    [5]

    Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36

    [6]

    Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd Ed.) (Reston: SciTech Publishing) pp4–22

    [7]

    Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 10 2303104Google Scholar

    [8]

    Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 47 4872Google Scholar

    [9]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [10]

    Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8 105815Google Scholar

    [11]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [12]

    Yu N, Genevet P, Kats Ma, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [13]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [14]

    Abdullah M, Koziel S 2022 IEEE Trans. Microwave Theory Tech. 70 264Google Scholar

    [15]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [16]

    Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636Google Scholar

    [17]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag. 67 2604Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [19]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [20]

    Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 70 2352Google Scholar

    [21]

    Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 21 20240246Google Scholar

    [22]

    Qi W J, Yu C, Du J L, Zhao Y J 2022 Int. J. RF Microwave Comput. Aided Eng. 32 23306Google Scholar

    [23]

    Koziel S, Abdullah M 2020 IEEE Trans. Microwave Theory Tech. 69 2028Google Scholar

    [24]

    Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 114Google Scholar

    [25]

    杨欣雨 2023 硕士学位论文 (南京: 东南大学)

    Yang X Y 2023 M. S. Thesis (Nanjing: Southeast University

    [26]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71 084102Google Scholar

    [27]

    Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 16 3188Google Scholar

    [28]

    Han X M, Xu H J, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8 162313Google Scholar

    [29]

    Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 Electron. Lett. 53 1381Google Scholar

    [30]

    Katoch S, Chauhan S S, Kumar V 2021 Multimed. Tools Appl. 80 8091Google Scholar

    [31]

    Wang D S, Tan D P, Liu L 2018 Soft Comput. 22 387Google Scholar

    [32]

    Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 78 29921Google Scholar

    [33]

    Dumoulin V, Visin F 2016 arXiv:1603.07285 [stat.ML]

    [34]

    Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv: 1505.00853 [cs.LG]

    [35]

    Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv: 1806.02375 [cs.LG]

    [36]

    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929

    [37]

    Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 503 92Google Scholar

    [38]

    Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 46 6486Google Scholar

    [39]

    Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 50 57Google Scholar

    [40]

    Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv: 2202.06373 [cs.CV]

    [41]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 68 2463Google Scholar

  • 图 1  (a)随机相位分布; (b)随机相位3D远场图; (c)随机相位2D远场图

    Figure 1.  (a) Random phase distribution; (b) 3D far-field of random phase; (c) 2D far-field of random phase

    图 2  (a)—(d) GA, PSO, PSO-GA, PSO-SA优化后的相位分布; (e)—(h) 优化相位分布后的3D远场图; (i)—(l)优化相位分布后的2D远场图

    Figure 2.  (a)–(d) Phase distributions optimized by GA, PSO, PSO-GA, and PSO-SA; (e)–(h) 3D far-field patterns of the optimized phase distributions; (i)–(l) 2D far-field patterns of the optimized phase distributions

    图 3  优化算法迭代过程中RCS均值的变化趋势

    Figure 3.  Variation trend of RCS mean value in the iteration process of optimization algorithms

    图 4  CNN 模型示意图

    Figure 4.  Diagram of CNN model.

    图 5  (a) Leaky ReLU激活函数图; (b) Sigmoid激活函数图

    Figure 5.  (a) Leaky ReLU activation function graph; (b) Sigmoid activation function graph

    图 6  全连接层结构示意图

    Figure 6.  Diagram of fully connected layer structure

    图 7  (a)损失函数图; (b) RCS 值迭代曲线图; (c)模型运行 100次结果图

    Figure 7.  (a) Loss function diagram; (b) RCS value iteration curve diagram; (c) results of 100 runs with model

    图 8  (a) CNN 优化后的相位分布; (b) CNN 优化相位分布后的3D远场图; (c) CNN优化相位分布后的2D远场图

    Figure 8.  (a) Phase distribution optimized by CNN; (b) 3D far-field patterns after optimizing phase distribution by CNN; (c) 2D far-field patterns after optimizing phase distribution by CNN

    图 9  (a) 各类算法优化效果; (b) 各类算法运行时间

    Figure 9.  (a) Optimization effect of various algorithms; (b) running time of various algorithms

    图 10  (a) 单元图; (b) 2 × 2子阵图

    Figure 10.  (a) Cell diagram; (b) 2 × 2 submatrix

    图 11  (a)—(d) PEC, 随机, PSO-SA 优化, CNN 优化相位分布后的3D远场图; (e)—(h) PEC, 随机, PSO-GA优化, CNN优化相位分布后的2D远场图

    Figure 11.  (a)–(d) 3D far-field patterns after phase distribution optimization by PEC, Random, PSO-SA, and CNN, respectively; (e)–(h) 2D far-field plots after phase distribution optimization by PEC, Random, PSO-SA, and CNN respectively

    图 12  入射角分别为30°, 45°, 60°时 (a)—(c) CST 全波仿真 PEC 板的3D远场图; (d)—(f) CNN优化后的相位分布; (g)—(i) CNN优化后的相位分布在CST全波仿真的3D远场图; (j)—(l) CNN优化后的相位分布在CST全波仿真的2D远场图

    Figure 12.  Incident angles of 30°, 45°, 60°: (a)–(c) 3D far-field patterns of CST full-wave simulation of PEC plates; (d)–(f) phase distribution optimized by CNN; (g)–(i) 3D far-field patterns of CST full-wave simulation with CNN-optimized phase distribution; (j)–(l) 2D far-field patterns of CST full-wave simulation with CNN-optimized phase distribution

    图 13  (a) CST全波仿真中RCS值随频率变化曲线; (b)双站RCS减缩值

    Figure 13.  (a) RCS vs. frequency curve in CST full-wave simulation; (b) bistatic RCS reduction

    图 14  (a)超表面加工样品示意图; (b)暗室测试环境

    Figure 14.  (a) Schematic illustration of the metasurface fabrication sample; (b) darkroom testing environment

    图 15  (a), (b) PEC 板全波仿真与实测1D远场结果图; (c), (d)样品全波仿真与实测1D远场结果图

    Figure 15.  (a), (b) 1D far-field results for full-wave simulation and measurement of PEC; (c), (d) 1D far-field results for full-wave simulation and measurement of sample

    图 16  双站 RCS 减缩仿真与实测值

    Figure 16.  Bistatic RCS reduction simulation and measured values

    表 1  损失函数不同权重参数效果对比

    Table 1.  Comparison of the effects of different weight coefficients of the loss function.

    权重参数 参数取值 RCS 值
    $ \gamma_{{\mathrm{RCS}}} $ 0.1, 0.5, 1.0, 1.5 15.5, 14.7, 14.6, 14.6 (收敛速度慢)
    $ \gamma_{{\mathrm{Phase}}} $ 0.1, 0.3, 0.7, 1.0 16.8, 16.3, 16.2, 16.0 (无法减缩RCS)
    $ \gamma_{{\mathrm{RCS}}} $ + $ \gamma_{{\mathrm{Phase}}} $ (0.1, 0.1), (0.5, 0.1), (0.5, 0.3)··· 16.3, 14.8, 15.6··· (二值化模糊)
    $ \gamma_{{\mathrm{RCS}}} $ + $ \gamma_{{\mathrm{Phase}}} $ + $ \gamma_{{\mathrm{Reg}}} $ (0.5, 0.1, 0.5), (0.5, 0.1, 1), (0.5, 0.1, 1.5)··· 14.8, 14.7, 14.6···
    DownLoad: CSV

    表 A1  实验环境配置

    Table A1.  Experimental environment configuration.

    名称 配置信息
    开发语言 Python 3.9
    框架 PyTorch 1.10.0 + CUDA 12.0
    CPU Intel Core i9
    GPU GeForce RTX 4060 Laptop GPU (8G)
    内存 8 G
    NumPy 1.21.3
    Matplotlib 3.9.2
    torchvision 0.13.0
    Pandas 1.3.3
    DownLoad: CSV
  • [1]

    Rao G A, Mahulikar S P 2002 Aeronaut. J. 106 629Google Scholar

    [2]

    Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd Ed.) (Reston: AIAA) pp8–56

    [3]

    Westwick P 2019 Stealth: The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42

    [4]

    Singh H, Antony S, Jha R M 2016 Plasma-based Radar Cross Section Reduction (Singapore: Springer) pp1–46

    [5]

    Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36

    [6]

    Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd Ed.) (Reston: SciTech Publishing) pp4–22

    [7]

    Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 10 2303104Google Scholar

    [8]

    Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 47 4872Google Scholar

    [9]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [10]

    Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8 105815Google Scholar

    [11]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [12]

    Yu N, Genevet P, Kats Ma, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [13]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [14]

    Abdullah M, Koziel S 2022 IEEE Trans. Microwave Theory Tech. 70 264Google Scholar

    [15]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [16]

    Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636Google Scholar

    [17]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag. 67 2604Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [19]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [20]

    Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 70 2352Google Scholar

    [21]

    Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 21 20240246Google Scholar

    [22]

    Qi W J, Yu C, Du J L, Zhao Y J 2022 Int. J. RF Microwave Comput. Aided Eng. 32 23306Google Scholar

    [23]

    Koziel S, Abdullah M 2020 IEEE Trans. Microwave Theory Tech. 69 2028Google Scholar

    [24]

    Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 114Google Scholar

    [25]

    杨欣雨 2023 硕士学位论文 (南京: 东南大学)

    Yang X Y 2023 M. S. Thesis (Nanjing: Southeast University

    [26]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71 084102Google Scholar

    [27]

    Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 16 3188Google Scholar

    [28]

    Han X M, Xu H J, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8 162313Google Scholar

    [29]

    Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 Electron. Lett. 53 1381Google Scholar

    [30]

    Katoch S, Chauhan S S, Kumar V 2021 Multimed. Tools Appl. 80 8091Google Scholar

    [31]

    Wang D S, Tan D P, Liu L 2018 Soft Comput. 22 387Google Scholar

    [32]

    Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 78 29921Google Scholar

    [33]

    Dumoulin V, Visin F 2016 arXiv:1603.07285 [stat.ML]

    [34]

    Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv: 1505.00853 [cs.LG]

    [35]

    Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv: 1806.02375 [cs.LG]

    [36]

    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929

    [37]

    Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 503 92Google Scholar

    [38]

    Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 46 6486Google Scholar

    [39]

    Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 50 57Google Scholar

    [40]

    Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv: 2202.06373 [cs.CV]

    [41]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 68 2463Google Scholar

  • [1] WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao. Convolutional network single-pixel imaging with fusion attention mechanism. Acta Physica Sinica, 2025, 74(8): 084202. doi: 10.7498/aps.74.20250010
    [2] JIANG Tingshuai, RUAN Yirun, LI Hai, BAI Liang, YUAN Yifei, YU Tianyuan. Entropy-based weighted multi-channel convolutional neural network method for node importance assessment. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250329
    [3] WU Yinhua, CHONG Zhe, ZHU Pengfei, CHEN Shasha, ZHOU Shun. Removal of background white light in coherent-dispersion spectrometer based on convolutional neural network. Acta Physica Sinica, 2025, 74(10): 104201. doi: 10.7498/aps.74.20250090
    [4] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [5] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [8] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [9] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [11] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [12] Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao. Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna. Acta Physica Sinica, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [13] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo. Research of a wide-angle backscattering enhancement metasurface. Acta Physica Sinica, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [16] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [17] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  745
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2025
  • Accepted Date:  21 February 2025
  • Available Online:  13 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回