搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电效应—百岁铁电的守护者

李飞 张树君 徐卓

引用本文:
Citation:

压电效应—百岁铁电的守护者

李飞, 张树君, 徐卓

Piezoelectricity—An important property for ferroelectrics during last 100 years

Li Fei, Zhang Shu-Jun, Xu Zhuo
PDF
HTML
导出引用
  • 作为电介质大家庭的重要成员, 铁电材料以其蕴含丰富的物理性质而闻名, 并因此吸引了大量科技工作者. 压电效应是铁电材料最为重要的物理性质之一, 同时也是目前铁电材料所有物理性质中应用最为广泛的. 例如: 水声声呐系统、医疗超声探头、压电驱动器等器件的核心压电元件均为铁电材料. 本文将以时间为轴, 重点介绍钛酸铅基铁电材料压电效应的发展历史, 同时讨论铁电材料微观结构、极化状态与压电效应之间的构效关系. 本文涉及到影响铁电材料压电效应的一些重要因素, 如: “准同型相界”、“软性掺杂”、“极化旋转”、“局域结构无序”等, 希望能够在铁电功能材料的设计方面给予读者启发.
    As an important member of the dielectric family, ferroelectric materials are known for their various physical properties and have been attracted considerable attention from both scientific respect and technology respect. Piezoelectricity is one of the most important properties of ferroelectrics, which has been widely used in many devices for the conversion between electric energy and mechanical energy. For example, the main piezoelectric elements of underwater acoustic transducers, medical imaging systems, piezoelectric actuators, etc., are all ferroelectrics. In this paper, the history of the piezoelectric effect in lead-based perovskite ferroelectrics is introduced, and the relationship among the microstructure, the state of polarization and the piezoelectricity is discussed. In addition, we introduce some important factors for optimizing the piezoelectricity of ferroelectrics, such as morphotropic phase boundary, soft doping, polarization rotation, local structural heterogeneity, etc. It is expected that this paper could shed light on the future design of ferroelectric materials with various functionalities.
      通信作者: 李飞, ful5@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51922083)资助的课题
      Corresponding author: Li Fei, ful5@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51922083)
    [1]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111Google Scholar

    [2]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [3]

    Jaffe H 1958 J. Am. Ceram. Soc. 41 494Google Scholar

    [4]

    Damjanovic D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1574Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Damjanovic D 2006 The Science of Hysteresis (Vol. Ⅲ) (New York: Academic Press) pp337−465

    [7]

    Cross L E 1993 Ferroelectric Ceramics (Basel: Birkhäuser) pp1-86

    [8]

    Cross L E 1987 Ferroelectr. 76 241Google Scholar

    [9]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [10]

    Li F, Zhang S J, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [11]

    Nomura S, Arima H, Kojima F 1973 Jpn. J. Appl. Phys. 12 531Google Scholar

    [12]

    Kuwata J, Uchino K, Nomura S 1982 Jpn. J. Appl. Phys. 21 1298Google Scholar

    [13]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [14]

    Zhang R, Jiang B, Cao W W 2003 Appl. Phys. Lett. 82 3737Google Scholar

    [15]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [16]

    Phelan D, Stock C, Rodriguez-Rivera J A, Chi S X, Leão J, Long X F, Xie Y J, Bokov A A, Ye Z G, Ganesh P, Gehring P M 2014 Proc. Nati. Acad. Sci. 111 1754Google Scholar

    [17]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [18]

    Li F, Zhang S J, Xu Z, Chen L Q 2017 Adv. Funct. Mater. 27 1700310Google Scholar

    [19]

    Xu G Y, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [20]

    Chen J, Chan H M, Harmer M P 1989 J. Am. Ceram. Soc. 72 593Google Scholar

    [21]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Cheng L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [22]

    Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J 2019 Science 364 264Google Scholar

    [23]

    Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [24]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [25]

    Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [26]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [27]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [28]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [29]

    You Y M, Liao W Q, Zhao D W, Ye H Y, Zhang Y, Zhou Q H, Niu X H, Wang J L, Li P F, Fu D W, Wang Z M, Gao S, Yang K L, Liu J M, Li J Y, Yan Y F, Xiong R G 2017 Science 357 306Google Scholar

    [30]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

  • 图 1  (a)单畴铁电材料极化矢量长程有序示意图, 其中红色箭头代表偶极矩; (b)自发极化与温度关系示意图(以二级铁电相变为例); (c)介电常数与温度关系

    Fig. 1.  (a) Schematic drawing of long-range ordered ferroelectrics with single-domain structure, where the red arrows indicate the electric dipoles; (b) the relationship between spontaneous polarization and temperature (taking the second-order ferroelectric phase transition as an example); (c) the relationship between dielectric permittivity and temperature.

    图 2  (a)热力学计算得到的三种不同组分PZT自由能与自发极化方向的关系, 图中给出了自发极化在$(1\bar 10)$面内由$[111]$方向转向$[\bar 1\bar 11]$方向过程中自由能的变化情况; (b)自发极化在$(1\bar 10)$面内, 由$[111]$方向转至$[\bar 1\bar 11]$方向的示意图

    Fig. 2.  (a) Relationship between the free energy and the direction of spontaneous polarization of three PZT solid-solutions, calculated by phenomenological theory; (b) the schematic of the rotation of the spontaneous polarization from $[111]$ to $[\bar 1\bar 11]$ direction within the $(1\bar 10)$ plane.

    图 3  铅基陶瓷压电系数d33与居里温度TC的对应关系[1]

    Fig. 3.  Relationship between d33 and TC for lead-based ceramics[1].

    图 4  弛豫铁电单晶与铅基陶瓷压电性能对比, 陶瓷数据源于文献[1], 晶体数据来源于文献[13]

    Fig. 4.  Comparison of d33 between lead-based ceramics and relaxor-PT single crystals. The data of the ceramics is from Ref. [1]; the data of crystals is from Ref. [13].

    图 5  剪切与纵向压电效应示意图(对于任意的铁电畴, 所受外加电场总可以按照电场与自发极化方向关系分为两类: 1)电场方向与自发极化相同的分量, E3; 2)电场方向与自发极化垂直的分量, E1. 图中红色箭头代表自发极化方向, 绿色箭头代表加电场后的自发极化方向)

    Fig. 5.  Schematic of shear and longitudinal piezoelectric responses. For a ferroelectric single-domain, the applied electric field can be divided into two categories: 1) The electric field (E3) parallel to the direction of the spontaneous polarization; 2) the electric field (E1) perpendicular to the direction of the spontaneous polarization. The red arrows represent the direction for the spontaneous polarization, and the green arrows represent the direction for the spontaneous polarization after applying an electric field.

    图 6  单畴PMN-PT弛豫铁电单晶剪切、纵向压电效应与准同型相界的关系[15]

    Fig. 6.  Shear and longitudinal piezoelectric properties versus MPB for single-domain PMN-PT crystals[15].

    图 7  PMN与PZT单晶的中子弹性弥散散射实验结果(图中纵轴为弥散散射强度, 其强度越大, 则表示局域结构无序性越强; 插图给出了在(001)散射面附近测得的弹性散射强度等值线的形状)[16]

    Fig. 7.  Neutron elastic diffuse scattering results for PMN and PZT single crystals. The y-axis represents the diffuse scattering intensity. The higher the intensity indicates the higher degree of the local structural heterogeneity. The inset figures give the contour maps of elastic scattering intensity measured near the (001) plane[16].

    图 8  单畴弛豫铁电单晶低温介电、压电性能[17,18] (a)单畴三方相PMN-0.28PT单晶横向介电常数(ε11); (b)单畴四方相PZN-0.15PT单晶横向介电常数(ε11); (c)两种晶体的低温剪切压电系数; (d)相比于传统铁电单晶, 弛豫铁电单晶室温高性能起因的示意图

    Fig. 8.  Low-temperature dielectric and piezoelectric properties of single-domain relaxor ferroelectric single crystals[17,18]: (a) Transverse dielectric (ε11) permittivity for rhombohedral PMN-0.28PT crystal; (b) transverse dielectric (ε11) permittivity for tetragonal PZN-0.15PT crystals; (c) shear piezoelectric properties for relaxor-PT crystals; (d) the origin of the ultrahigh dielectric/piezoelectric properties in relaxor-PT ferroelectric crystals when compared to the conventional ferroelectric crystals.

    图 9  (a) PZN-0.15PT单晶与(b) PZN单晶的X射线弥散散射实验结果[19]

    Fig. 9.  X-ray diffuse scattering results of (a) PZN-0.15PT and (b) PZN crystals[19].

    图 10  (a)四方相长程铁电畴中嵌入正交相极性微区的结构示意图; (b)正交相极性微区自由能随界面能作用增强的变化(热力学计算结果), 其中横轴表示极化矢量与[001]方向的夹角[17]

    Fig. 10.  (a) Phase-field simulated microstructural variation of a tetragonal ferroelectric with embedded orthorhombic polar nanoregions (PNRs); (b) the change of free energy profiles of the PNRs with increasing the impact of interfacial energy. The x-axis represents the angle between the polar vector and the [001] direction[17].

    图 11  单畴PZN-0.15PT的相场模拟结果 (a)极化矢量方向随温度的变化, 图中颜色代表极化矢量与水平方向的夹角; (b)横向介电常数与温度关系的模拟结果[17]

    Fig. 11.  Phase-field simulation results of single-domain PZN-0.15PT crystal: (a) Temperature-dependent microstructural variations (the color bar denotes the angle between the polar vector and the horizontal direction); (b) the transverse dielectric permittivity versus temperature[17].

    图 12  温度为350 K时, 单畴PZN-0.15PT晶体在横向电场作用下介观结构变化(a)和相应的极化强度-电场(P-E)曲线(b), 图(a)中, 颜色代表极化矢量与水平方向的夹角(为了与经典铁电畴性能进行对比, 图(a)和(b)中给出了没有极性微区的长程铁电的模拟结果)[17]

    Fig. 12.  Microstructural variation under a transverse electric field for the single-domain PZN-0.15PT crystal at 350 K and the corresponding P-E curve. In panel (a), the color represents the angle between polar vectors and the horizontal direction. Panels (a) and (b) also gave the simulated results for a classical ferroelectric single-domain (tetragonal matrix)[17].

    图 13  掺杂PMN-0.28PT陶瓷低温介电常数(a)和介电损耗(b)[21]

    Fig. 13.  Low-temperature dielectric permittivities (a) and dielectric losses (b) for PMN-0.28PT ceramics[21].

    图 14  Sm掺杂PMN-0.31PT陶瓷与PMN-36PT陶瓷介电性能的对比(图中横轴ΔT = TTC, 插图的横轴为陶瓷实际温度)[21]

    Fig. 14.  Comparison of dielectric properties between Sm-doped PMN-0.31PT and PMN-36PT ceramics. The x-axis of the figure ΔT = TTC, while the x-axis of the inset figure represents the actual temperature of the ceramics[21].

    图 15  (a) Sr掺杂与(b) Sm掺杂PMN-0.31PT陶瓷介电性能性能对比(图(a)中给出了Sr掺杂PMN-0.31PT的室温介电和压电系数)[21]

    Fig. 15.  Comparison of dielectric properties between (a) Sr-doped and (b) Sm-doped PMN-0.31PT ceramics. The room temperature dielectric and piezoelectric properties of Sr-doped PMN-0.31PT are given in (a)[21].

    图 16  软性(P5H)和硬性PZT陶瓷(P4)陶瓷低温(a)介电常数与(b)介电损耗

    Fig. 16.  Low-temperature (a) dielectric permittivities and (b) dielectric losses for soft (P5H) and hard PZT (P4) ceramics.

    图 17  两种铁电单晶的低温介电性能 (a) [001]极化的BZT-BCT单晶, 室温为三方相, 晶体为韩国H Y Lee教授提供; (b) [001]极化的Ta掺杂KNN单晶, 室温为正交相

    Fig. 17.  Low-temperature dielectric properties for (a) [001]-poled rhombohedral BZT-BCT crystal. The crystals were from Professor H Y Lee in Korea; (b) [001]-poled orthorhombic Ta-doped KNN crystal.

  • [1]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111Google Scholar

    [2]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [3]

    Jaffe H 1958 J. Am. Ceram. Soc. 41 494Google Scholar

    [4]

    Damjanovic D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1574Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Damjanovic D 2006 The Science of Hysteresis (Vol. Ⅲ) (New York: Academic Press) pp337−465

    [7]

    Cross L E 1993 Ferroelectric Ceramics (Basel: Birkhäuser) pp1-86

    [8]

    Cross L E 1987 Ferroelectr. 76 241Google Scholar

    [9]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [10]

    Li F, Zhang S J, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [11]

    Nomura S, Arima H, Kojima F 1973 Jpn. J. Appl. Phys. 12 531Google Scholar

    [12]

    Kuwata J, Uchino K, Nomura S 1982 Jpn. J. Appl. Phys. 21 1298Google Scholar

    [13]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [14]

    Zhang R, Jiang B, Cao W W 2003 Appl. Phys. Lett. 82 3737Google Scholar

    [15]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [16]

    Phelan D, Stock C, Rodriguez-Rivera J A, Chi S X, Leão J, Long X F, Xie Y J, Bokov A A, Ye Z G, Ganesh P, Gehring P M 2014 Proc. Nati. Acad. Sci. 111 1754Google Scholar

    [17]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [18]

    Li F, Zhang S J, Xu Z, Chen L Q 2017 Adv. Funct. Mater. 27 1700310Google Scholar

    [19]

    Xu G Y, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [20]

    Chen J, Chan H M, Harmer M P 1989 J. Am. Ceram. Soc. 72 593Google Scholar

    [21]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Cheng L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [22]

    Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J 2019 Science 364 264Google Scholar

    [23]

    Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [24]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [25]

    Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [26]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [27]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [28]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [29]

    You Y M, Liao W Q, Zhao D W, Ye H Y, Zhang Y, Zhou Q H, Niu X H, Wang J L, Li P F, Fu D W, Wang Z M, Gao S, Yang K L, Liu J M, Li J Y, Yan Y F, Xiong R G 2017 Science 357 306Google Scholar

    [30]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 贾艳敏, 王晓星, 张祺昌, 武峥. 压-电-化学耦合增强策略及机理研究进展. 物理学报, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [3] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [5] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [6] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [7] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [8] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [9] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [10] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [11] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [12] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [13] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [14] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [15] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [16] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [17] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [18] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [19] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  22781
  • PDF下载量:  1508
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-25
  • 修回日期:  2020-07-30
  • 上网日期:  2020-11-02
  • 刊出日期:  2020-11-05

/

返回文章
返回