搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒-板电极下缩比气隙辉光放电相似性的仿真研究

付洋洋 罗海云 邹晓兵 王强 王新新

引用本文:
Citation:

棒-板电极下缩比气隙辉光放电相似性的仿真研究

付洋洋, 罗海云, 邹晓兵, 王强, 王新新

Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration

Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin
PDF
导出引用
  • 建立了棒-板电极下氩气直流放电的流体模型,利用有限元法对几何位形相似的两个气隙放电过程进行了数值求解. 两放电气隙外加电压相同,气隙线性尺寸的比值为10:1,气压分别为1 Torr 和10 Torr. 仿真得到了两相似气隙的放电的伏安特性曲线以及放电物理量(如电位、电场、电子密度、离子密度、电子温度等)的空间分布. 根据气体放电相似性的基本结论,检验了气隙对应物理量之间的数值关系. 结果表明:两相似气隙的放电类型为正常辉光放电,对应放电物理量之间存在相似性理论指出的比例关系,且在相同幅值的直流电压作用下,气隙放电的工作点相同. 这将为利用气体放电相似性来外推相似气隙的放电特性提供一定的理论依据.
    A fluid model of direct-current (DC) discharge in argon atmosphere between the gaps of rod-plane electrode configuration was established, and the discharge models of two geometrically similar gaps were solved using the finite-element method, respectively. The dimension ratio of the gaps was set as 10:1, and the gas pressure was ~133.3 Pa for the prototype and ~133 Pa for the scale-down gap; to the gaps the same DC voltages were applied. Voltage-current characteristics, as well as the physical discharge parameters (such as electric potential, electric field, electron density, ion density, and electron temperature) were obtained. Relations between parameters of the two gaps were investigated according to the theoretical relations derived by similarity law. Simulation results show that the discharge type in the two similar gaps is verified as a normal glow discharge; the parameter relations are in good agreement with the similarity law, and the working points of discharges are identical in similar gaps with the same applied DC voltage. This study could offer theoretical instruction in extrapolating the discharge properties for similar gaps.
    • 基金项目: 国家自然科学基金(批准号:51377095,51107067)、全国优博论文专项资金(批准号:201336)和霍英东教育基金会(批准号:2142019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51377095, 51107067), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.201336), and the Fok Ying Tung Education Foundation (Grant No. 2142019).
    [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Massines F, Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411

    [3]

    Roth J R 2001 Industrial Plasma Engineering. Volume II-Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [4]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [5]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [6]

    Li J, Shimada M, Zhao Y, Hu J, Gong X, Yu Y W, Zhuo G Z 2011 J. Nucl. Mater. 415 S35

    [7]

    Shimada M, Pitts R A 2011 J. Nucl. Mater. 415 S1013

    [8]

    Antipenkov A B, Ladd P, Marrs R 2001 Fusion Eng. Des. 56 233

    [9]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [10]

    Li J H, Hu J S, Wang X M, Yu Y W, Wu J H, Wang H Y 2012 Acta Phys. Sin. 61 205203 (in Chinese)[李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银 2012 物理学报 61 205203]

    [11]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海:复旦大学出版社)第75–80页]

    [12]

    Janasek D, Franzke J, Manz A 2006 Nature 442 p374

    [13]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [14]

    Passchier J D P, Goedheer W J 1993 J. Appl. Phys. 74 3744

    [15]

    Shao X J, Ma Y, Li Y X, Zhang G X 2012 Acta Phys. Sin. 61 045205 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2012 物理学报 61 045205]

    [16]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [17]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [20]

    Hyman H A 1979 Phys. Rev. A 20 855

    [21]

    Fiala A, Pitchford L C, Boeuf J P 1994 Phys. Rev. E 49 5607

    [22]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [23]

    Farouk T, Farouk B, Staack D, Gutsol A, Fridman A 2006 Plasma Sources Sci. Technol. 15 676

    [24]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743

    [25]

    Franzke J 2009 Anal. Bioanal. Chem. 395 549

    [26]

    Fu Y Y, Luo H Y, Zou X B, Liu K, Wang X X 2013 Acta Phys. Sin. 62 205209 (in Chinese) [付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新 2013 物理学报 62 205209]

  • [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Massines F, Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411

    [3]

    Roth J R 2001 Industrial Plasma Engineering. Volume II-Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [4]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [5]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [6]

    Li J, Shimada M, Zhao Y, Hu J, Gong X, Yu Y W, Zhuo G Z 2011 J. Nucl. Mater. 415 S35

    [7]

    Shimada M, Pitts R A 2011 J. Nucl. Mater. 415 S1013

    [8]

    Antipenkov A B, Ladd P, Marrs R 2001 Fusion Eng. Des. 56 233

    [9]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [10]

    Li J H, Hu J S, Wang X M, Yu Y W, Wu J H, Wang H Y 2012 Acta Phys. Sin. 61 205203 (in Chinese)[李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银 2012 物理学报 61 205203]

    [11]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海:复旦大学出版社)第75–80页]

    [12]

    Janasek D, Franzke J, Manz A 2006 Nature 442 p374

    [13]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [14]

    Passchier J D P, Goedheer W J 1993 J. Appl. Phys. 74 3744

    [15]

    Shao X J, Ma Y, Li Y X, Zhang G X 2012 Acta Phys. Sin. 61 045205 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2012 物理学报 61 045205]

    [16]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [17]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [20]

    Hyman H A 1979 Phys. Rev. A 20 855

    [21]

    Fiala A, Pitchford L C, Boeuf J P 1994 Phys. Rev. E 49 5607

    [22]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [23]

    Farouk T, Farouk B, Staack D, Gutsol A, Fridman A 2006 Plasma Sources Sci. Technol. 15 676

    [24]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743

    [25]

    Franzke J 2009 Anal. Bioanal. Chem. 395 549

    [26]

    Fu Y Y, Luo H Y, Zou X B, Liu K, Wang X X 2013 Acta Phys. Sin. 62 205209 (in Chinese) [付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新 2013 物理学报 62 205209]

计量
  • 文章访问数:  2245
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-13
  • 修回日期:  2014-01-16
  • 刊出日期:  2014-05-05

棒-板电极下缩比气隙辉光放电相似性的仿真研究

  • 1. 清华大学电机工程与应用电子技术系, 北京 100084
    基金项目: 

    国家自然科学基金(批准号:51377095,51107067)、全国优博论文专项资金(批准号:201336)和霍英东教育基金会(批准号:2142019)资助的课题.

摘要: 建立了棒-板电极下氩气直流放电的流体模型,利用有限元法对几何位形相似的两个气隙放电过程进行了数值求解. 两放电气隙外加电压相同,气隙线性尺寸的比值为10:1,气压分别为1 Torr 和10 Torr. 仿真得到了两相似气隙的放电的伏安特性曲线以及放电物理量(如电位、电场、电子密度、离子密度、电子温度等)的空间分布. 根据气体放电相似性的基本结论,检验了气隙对应物理量之间的数值关系. 结果表明:两相似气隙的放电类型为正常辉光放电,对应放电物理量之间存在相似性理论指出的比例关系,且在相同幅值的直流电压作用下,气隙放电的工作点相同. 这将为利用气体放电相似性来外推相似气隙的放电特性提供一定的理论依据.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回