搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变加载下Si纳米线电输运性能的原位电子显微学研究

王疆靖 邵瑞文 邓青松 郑坤

引用本文:
Citation:

应变加载下Si纳米线电输运性能的原位电子显微学研究

王疆靖, 邵瑞文, 邓青松, 郑坤

Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope

Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun
PDF
导出引用
  • 半导体纳米材料超大的弹性极限使其物理性能具有很宽的调谐范围,被认为是应变工程理想的研究材料,引起了人们广泛的关注. 本研究中,利用聚焦离子束技术从p型Si的单晶薄膜上切割出取向的单根纳米线,在透射电子显微镜中利用纳米操控系统对其加载弯曲形变,同时实时监测其电流-电压曲线的变化,研究弯曲应变对其电学性能的影响. 结果表明,随着应变的增大,纳米线输运性能明显增强,当应变接近2%时,输运性能随应变的提升接近饱和;当应变达到3%以后,输运性能有时会略微下降,这可能由塑形事件导致的. 本实验结果可能会对Si应变工程起到重要的参考意义.
    Strain engineering in semiconductor nanostructure has been received great attention because their ultra-large elastic limit can induce a broad tuning range of the physical properties. Here, we report how the electrical transport properties of the p-type -oriented Si nanowires may be tuned by bending strain and affected by the plastic deformation in a transmission electron microscope. These freestanding nanowires were prepared from commercial silicon-on-insulator materials using the focusing ion beam technique. Results show that the conductivity of these Si nanowires is improved remarkably by bending strain when the strain is lower than 2%, while the improvement is nearly saturated when the strain approaches to 2%. The electric current will reduce a little sometimes when strain exceeds 3%, which may result from plastic events. Our experimental results may be helpful to Si strain engineering.
    • 基金项目: 国家自然科学基金(批准号:11004004,11374029,11234011)、全国优秀博士学位论文作者专项资金(批准号:201214)和北京市科技新星项目(批准号:Z121103002512017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004004, 11374029, 11234011), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201214), and the Beijing Nova Program, China (Grant No. Z121103002512017).
    [1]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [2]

    Liu Z Y, Zhang J C, Duan H T, Xue J S, Lin Z Y, Ma J C, Xue X Y, Hao Y 2011 Chin. Phys. B 20 097701

    [3]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese)[宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [4]

    Rima K, Andersonb R, Boydb D, Cardonea F, Chana K, Chenb H, Christansena S, Chua J, Jenkinsa K, Kanarskyb T, Koestera S, Leeb B H, Leea K, Mazzeob V, Mocutab A, Mocutab D, Mooneya P M, Oldigesb P, Otta J, Ronsheimb P, Roya R, Steegenb A, Yanga M, Zhub H, Ieongb M, Wonga H S P 2003 Solid-State Electronics 47 1133

    [5]

    Wang D, Ninomiya Masaharu, Nakamae Masahiko, Nakashima Hiroshi 2005 Appl. Phys. Lett. 86 122111

    [6]

    Nayak D K, Woo J C S, Park J S, Wang K L, MacWilliams, K P 1993 Appl. Phys. Lett. 62 2853

    [7]

    Stan G, Krylyuk S, Davydov A V, Levin I, Cook R F 2012 Nano Lett. 12 2599

    [8]

    Smith D A, Holmberg V C, Korgel B A 2010 ACS Nano 4 2356

    [9]

    Wei B, Zheng K, Ji Y, Zhang Y F, Zhang Z, Han X D 2012 Nano Lett. 12 4595

    [10]

    Pang C Y, Lee G Y, Kim T, Kim S M, Kim H N, Ahn S H, Suh K Y 2012 Nat. Mater. 11 795

    [11]

    Bai X D, Golberg D Y, Bando C, Zhi Y, Tang C C, Mitome M, Kurashima K 2007 Nano Lett. 7 632

    [12]

    Wang Z L, Song J H 2006 Science 312 242

    [13]

    Han X B, Kou L Z, Lang X L, Xia J B, Wang N, Qin R, Lu J, Xu J, Liao Z M, Zhang X Z, Shan X D, Song X F, Gao J Y, Guo W L, Yu D P 2009 Adv. Mater. 21 4937

    [14]

    Han X B, Kou L Z, Zhang Z Y, Zhu X L, Xu J, Liao Z M, Guo W L, Yu D P 2012 Adv. Mater. 24 4707

    [15]

    Xu S G, Guo W H, Du S W, Loy M M T, Wang N 2012 Nano Lett. 12 5802

    [16]

    Signorello G, Karg S, Björk M T 2013 Nano Lett. 13 917

    [17]

    Shao R W, Zheng K, Zhang Y F, Li Y J, Zhang Z, Han X D 2012 Appl. Phys. Lett. 101 233109

    [18]

    Wang J, Rahman A, Ghosh A, Klimeck, Lundstrom G M 2005 Appl. Phys. Lett. 86 093113

    [19]

    Hong K, Kim J, Lee S, Shin J K 2008 Nano Lett. 8 1335

    [20]

    Shiri K, Kong Y, Buin A, Anantram M P 2008 Appl. Phys. Lett. 93 073114

    [21]

    Sajjad R N, Alam K 2009 J. Appl. Phys. 105 044307

    [22]

    Jin Z, Qiao L P, Guo C, Wang J A, Liu C 2013 Acta Phys. Sin. 62 058501 (in Chinese)[靳钊, 乔丽萍, 郭晨, 王江安, 刘策 2013 物理学报 62 058501]

    [23]

    Zhang J H, Huang Q A, Yu H, Lei S Y 2009 Sensors 9 2746

    [24]

    Cao J X, Gong X G, Wu R Q 2007 Phys. Rev. B 75 233302

    [25]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [26]

    Zhao L X, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 6545 (in Chinese)[赵丽霞, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 物理学报 59 6545]

    [27]

    Niquet Y M, Delerue C, Krzeminski C 2012 Nano Lett. 12 3545

    [28]

    Fishchetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [29]

    Feste S F, Knoch J, Habicht S, Buca D, Zhao Q T, Mantl S 2009 Solid-state Electronics 53 1257

    [30]

    Toriyama T, Funai D, Sugiyama S 2003 J. Appl. Phys. 93 561

    [31]

    Yang Y L, Li X X 2011 Nanotech. 22 015501

    [32]

    Neuzil P, Wong C C, Rebound J 2010 Nano Lett. 10 1248

    [33]

    Lugstein A, Steinmair M, Steiger A, Kosina H, Bertagnolli E 2010 Nano Lett. 10 3204

    [34]

    He R H, Yang P D 2006 Nat. Nanotech. 1 42

    [35]

    Milne J S, Rowe A C H, Arscott S, Renner C 2010 Phys. Rev. Lett. 105 226802

    [36]

    Qin Y, Zhang X N, Zheng K, Li H, Han X D, Zhang Z 2008 Appl. Phys. Lett. 93 063104

    [37]

    Zheng K, Shao R W, Deng Q S, Zhang Y F, Li Y J, Han X D, Zhang Z, Zou J 2014 Appl. Phys. Lett. 104 013111

    [38]

    Svensson K, Jompol Y, Olin H, Olsson E 2003 Rev. Sci. Instrum. 74 4945

    [39]

    Shao R W, Zheng K, Wei B, Zhang Y F, Li Y J, Han X D, Zhang Z, Zou J 2014 Nanoscale 4 4936

    [40]

    Han X D, Zhang Y F, Zheng K, Zhang X N, Zhang Z, Hao Y J, Guo X Y, Yuan J, Wang Z L 2007 Nano Lett. 7 452

    [41]

    Han X D, Zheng K, Zhang Y F, Zhang X N, Zhang Z, Wang Z L 2007 Adv. Mater. 19 2112

    [42]

    Zheng K, Han X D, Wang L H, Zhang Y F, Yue Y H, Qin Y, Zhang X N, Zhang Z 2009 Nano Lett. 9 2471

    [43]

    Wang L H, Zheng K, Zhang Z, Han X D 2011 Nano Lett. 11 2382

  • [1]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [2]

    Liu Z Y, Zhang J C, Duan H T, Xue J S, Lin Z Y, Ma J C, Xue X Y, Hao Y 2011 Chin. Phys. B 20 097701

    [3]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese)[宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [4]

    Rima K, Andersonb R, Boydb D, Cardonea F, Chana K, Chenb H, Christansena S, Chua J, Jenkinsa K, Kanarskyb T, Koestera S, Leeb B H, Leea K, Mazzeob V, Mocutab A, Mocutab D, Mooneya P M, Oldigesb P, Otta J, Ronsheimb P, Roya R, Steegenb A, Yanga M, Zhub H, Ieongb M, Wonga H S P 2003 Solid-State Electronics 47 1133

    [5]

    Wang D, Ninomiya Masaharu, Nakamae Masahiko, Nakashima Hiroshi 2005 Appl. Phys. Lett. 86 122111

    [6]

    Nayak D K, Woo J C S, Park J S, Wang K L, MacWilliams, K P 1993 Appl. Phys. Lett. 62 2853

    [7]

    Stan G, Krylyuk S, Davydov A V, Levin I, Cook R F 2012 Nano Lett. 12 2599

    [8]

    Smith D A, Holmberg V C, Korgel B A 2010 ACS Nano 4 2356

    [9]

    Wei B, Zheng K, Ji Y, Zhang Y F, Zhang Z, Han X D 2012 Nano Lett. 12 4595

    [10]

    Pang C Y, Lee G Y, Kim T, Kim S M, Kim H N, Ahn S H, Suh K Y 2012 Nat. Mater. 11 795

    [11]

    Bai X D, Golberg D Y, Bando C, Zhi Y, Tang C C, Mitome M, Kurashima K 2007 Nano Lett. 7 632

    [12]

    Wang Z L, Song J H 2006 Science 312 242

    [13]

    Han X B, Kou L Z, Lang X L, Xia J B, Wang N, Qin R, Lu J, Xu J, Liao Z M, Zhang X Z, Shan X D, Song X F, Gao J Y, Guo W L, Yu D P 2009 Adv. Mater. 21 4937

    [14]

    Han X B, Kou L Z, Zhang Z Y, Zhu X L, Xu J, Liao Z M, Guo W L, Yu D P 2012 Adv. Mater. 24 4707

    [15]

    Xu S G, Guo W H, Du S W, Loy M M T, Wang N 2012 Nano Lett. 12 5802

    [16]

    Signorello G, Karg S, Björk M T 2013 Nano Lett. 13 917

    [17]

    Shao R W, Zheng K, Zhang Y F, Li Y J, Zhang Z, Han X D 2012 Appl. Phys. Lett. 101 233109

    [18]

    Wang J, Rahman A, Ghosh A, Klimeck, Lundstrom G M 2005 Appl. Phys. Lett. 86 093113

    [19]

    Hong K, Kim J, Lee S, Shin J K 2008 Nano Lett. 8 1335

    [20]

    Shiri K, Kong Y, Buin A, Anantram M P 2008 Appl. Phys. Lett. 93 073114

    [21]

    Sajjad R N, Alam K 2009 J. Appl. Phys. 105 044307

    [22]

    Jin Z, Qiao L P, Guo C, Wang J A, Liu C 2013 Acta Phys. Sin. 62 058501 (in Chinese)[靳钊, 乔丽萍, 郭晨, 王江安, 刘策 2013 物理学报 62 058501]

    [23]

    Zhang J H, Huang Q A, Yu H, Lei S Y 2009 Sensors 9 2746

    [24]

    Cao J X, Gong X G, Wu R Q 2007 Phys. Rev. B 75 233302

    [25]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [26]

    Zhao L X, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 6545 (in Chinese)[赵丽霞, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 物理学报 59 6545]

    [27]

    Niquet Y M, Delerue C, Krzeminski C 2012 Nano Lett. 12 3545

    [28]

    Fishchetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [29]

    Feste S F, Knoch J, Habicht S, Buca D, Zhao Q T, Mantl S 2009 Solid-state Electronics 53 1257

    [30]

    Toriyama T, Funai D, Sugiyama S 2003 J. Appl. Phys. 93 561

    [31]

    Yang Y L, Li X X 2011 Nanotech. 22 015501

    [32]

    Neuzil P, Wong C C, Rebound J 2010 Nano Lett. 10 1248

    [33]

    Lugstein A, Steinmair M, Steiger A, Kosina H, Bertagnolli E 2010 Nano Lett. 10 3204

    [34]

    He R H, Yang P D 2006 Nat. Nanotech. 1 42

    [35]

    Milne J S, Rowe A C H, Arscott S, Renner C 2010 Phys. Rev. Lett. 105 226802

    [36]

    Qin Y, Zhang X N, Zheng K, Li H, Han X D, Zhang Z 2008 Appl. Phys. Lett. 93 063104

    [37]

    Zheng K, Shao R W, Deng Q S, Zhang Y F, Li Y J, Han X D, Zhang Z, Zou J 2014 Appl. Phys. Lett. 104 013111

    [38]

    Svensson K, Jompol Y, Olin H, Olsson E 2003 Rev. Sci. Instrum. 74 4945

    [39]

    Shao R W, Zheng K, Wei B, Zhang Y F, Li Y J, Han X D, Zhang Z, Zou J 2014 Nanoscale 4 4936

    [40]

    Han X D, Zhang Y F, Zheng K, Zhang X N, Zhang Z, Hao Y J, Guo X Y, Yuan J, Wang Z L 2007 Nano Lett. 7 452

    [41]

    Han X D, Zheng K, Zhang Y F, Zhang X N, Zhang Z, Wang Z L 2007 Adv. Mater. 19 2112

    [42]

    Zheng K, Han X D, Wang L H, Zhang Y F, Yue Y H, Qin Y, Zhang X N, Zhang Z 2009 Nano Lett. 9 2471

    [43]

    Wang L H, Zheng K, Zhang Z, Han X D 2011 Nano Lett. 11 2382

  • [1] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220358
    [2] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212350
    [3] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [4] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [5] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [6] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型. 物理学报, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [7] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [8] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性. 物理学报, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [9] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [10] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [11] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [12] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [13] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [14] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [15] 彭英才, 范志东, 白振华, 马蕾. Si纳米线的固-液-固可控生长及其形成机理分析. 物理学报, 2010, 59(2): 1169-1174. doi: 10.7498/aps.59.1169
    [16] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能. 物理学报, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [17] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [18] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [19] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [20] 成步文, 姚 飞, 薛春来, 张建国, 李传波, 毛容伟, 左玉华, 罗丽萍, 王启明. 带隙法测定SiGe/Si材料的应变状态. 物理学报, 2005, 54(9): 4350-4353. doi: 10.7498/aps.54.4350
计量
  • 文章访问数:  3361
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2014-02-23
  • 刊出日期:  2014-06-05

应变加载下Si纳米线电输运性能的原位电子显微学研究

  • 1. 北京工业大学固体微结构与性能研究所, 北京 100124
    基金项目: 国家自然科学基金(批准号:11004004,11374029,11234011)、全国优秀博士学位论文作者专项资金(批准号:201214)和北京市科技新星项目(批准号:Z121103002512017)资助的课题.

摘要: 半导体纳米材料超大的弹性极限使其物理性能具有很宽的调谐范围,被认为是应变工程理想的研究材料,引起了人们广泛的关注. 本研究中,利用聚焦离子束技术从p型Si的单晶薄膜上切割出取向的单根纳米线,在透射电子显微镜中利用纳米操控系统对其加载弯曲形变,同时实时监测其电流-电压曲线的变化,研究弯曲应变对其电学性能的影响. 结果表明,随着应变的增大,纳米线输运性能明显增强,当应变接近2%时,输运性能随应变的提升接近饱和;当应变达到3%以后,输运性能有时会略微下降,这可能由塑形事件导致的. 本实验结果可能会对Si应变工程起到重要的参考意义.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回