搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿基米德螺旋微纳结构中的表面等离激元聚焦

李嘉明 唐鹏 王佳见 黄涛 林峰 方哲宇 朱星

引用本文:
Citation:

阿基米德螺旋微纳结构中的表面等离激元聚焦

李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星

Focusing surface plasmon polaritons in archimedes' spiral nanostructure

Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing
PDF
导出引用
  • 研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.
    Surface plasmon polaritons (SPPs) are a hybrid mode of a light field and metallic collective electrons oscillated resonantly and excited at the metal/dielectric interface. Recently extensive research has been carried out due to its technological potential in nano-optics. The SPPs coupling, focusing, waveguiding and resonance enhancement are hot spots in this field. In particular, to find a simple method that can focus SPPs into a highly confined spot with the size beyond the diffraction limit is still a big challenge. In this work, we have fabricated the Archimedes' spiral structures with different structural parameters on an Au film by using focused ion beam etching technique. Through changing the chiralities of the incident circularly polarized light and the spiral structure, we have studied theoretically and experimentally the focusing properties of the Archimedes spiral structures with different parameters. We find that besides the chiralities of the incident light and the spiral structure, the pitch of screw of the spiral structure and the wavelength of the excited light also affect the surface plasmon field. The resulting surface plasmon fields inside the structure are the zero-order, first-order, and high-order evanescent Bessel beams. By using a phase analysis and a finite-difference time-domain simulation method, we calculate the electric field and phase distribution in different spiral structures. A near-field vortex mode with different spin-dependent topological charges can be obtained in the structures. Furthermore, the results of the scanning near-field optical microscopy measurements verify the theory and simulation results. The method of using an Archimedes' spiral structure to focus SPPs provides a new route to manipulate the SPPs optical field in nanoscale. Based on theoretical calculation and FDTD simulation in this work, we have studied the physical process of the optical field manipulation in spiral structures. The significant and innovated points of this work are: a) We have developed the phase theory, and analyzed the field manipulation process of spiral structures with different parameters and chiralities at different circular polarization and wavelengths. b) A more effective and convenient way is used for SPPs focusing in linearly polarized light and circularly polarized light. c) A near-field vortex surface mode with different spin-dependent topological charges is obtained for the structure. This work can be considered to have applications in SPPs tweezers, highly integrated photonic devices.
      通信作者: 朱星, zhuxing@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB933004, 2015CB932403)、国家自然科学基金(批准号:61176120, 61378059, 60977015, 61422501, 11374023)、北京自然科学基金(批准号:L140007)资助的课题.
      Corresponding author: Zhu Xing, zhuxing@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB933004, 2015CB932403), the National Natural Science Foundation of China (Grant Nos. 61176120, 61378059, 60977015, 61422501, 11374023), and the Beijing Natural Science Foundation, China (Grant No. L140007).
    [1]

    Raether H 1988 Surface plasmons-on smooth and rought surfaces and on gratings (Berlin: Springer-Verlag) pp23-25

    [2]

    Volkov V S, Bozhevolnyi S I, Leosson K 2003 J. Microsc. 210 324

    [3]

    Pyayt A, Wiley B, Xia Y N 2008 Nat. Nanotechnol. 3 660

    [4]

    Kennedy D C, Tay L L, Lyn R K 2009 ACS Nano 3 2329

    [5]

    Fischer U, Pohl D 1989 Phys. Rev. Lett. 62 458

    [6]

    Fang Z Y, Lin C F, Ma R M 2010 ACS Nano 4 75

    [7]

    Song W T, Fang Z Y, Huang S 2010 Opt. Express 18 14762

    [8]

    Lee B, Kim S, Kim H 2010 Prog. Quant. Electron 34 47

    [9]

    Holmgaard T, Gosciniak J, Bozhevolnyi S I 2010 Opt. Express 18 23009

    [10]

    Falk A L, Koppens F H L, Yu C L 2009 Nat Phys. 5 475

    [11]

    Vedantam S, Lee H, Tang J 2009 Nano Lett. 9 3447

    [12]

    Fang Z Y, Zhu X 2011 Acta Phys. Sin. 60 594 (in Chinese) [方哲宇, 朱星 2011 物理学报 60 594]

    [13]

    Yang S Y, Chen W B, Nelson R 2009 Opt. Lett. 34 3047

    [14]

    Gorodetski Y, Niv A, Kleiner V, Hasman E 2008 Phy. Rev. Lett. 101 043903

    [15]

    Chen W B, Abeysinghe D C, Nelson R L 2010 Nano Lett. 10 2075

    [16]

    Miao J J, Wang Y S, Guo C F 2011 Plasmonics 6 235

    [17]

    Tomoki O, Shintaro M 2006 Opt. Express 14 6285

    [18]

    Tsai W Y, Huang J S, Huang C B 2013 Nano Lett. 10 1021

    [19]

    Palik E D 1985 Handbook of optical constants of solids(New York: Academic) pp60

  • [1]

    Raether H 1988 Surface plasmons-on smooth and rought surfaces and on gratings (Berlin: Springer-Verlag) pp23-25

    [2]

    Volkov V S, Bozhevolnyi S I, Leosson K 2003 J. Microsc. 210 324

    [3]

    Pyayt A, Wiley B, Xia Y N 2008 Nat. Nanotechnol. 3 660

    [4]

    Kennedy D C, Tay L L, Lyn R K 2009 ACS Nano 3 2329

    [5]

    Fischer U, Pohl D 1989 Phys. Rev. Lett. 62 458

    [6]

    Fang Z Y, Lin C F, Ma R M 2010 ACS Nano 4 75

    [7]

    Song W T, Fang Z Y, Huang S 2010 Opt. Express 18 14762

    [8]

    Lee B, Kim S, Kim H 2010 Prog. Quant. Electron 34 47

    [9]

    Holmgaard T, Gosciniak J, Bozhevolnyi S I 2010 Opt. Express 18 23009

    [10]

    Falk A L, Koppens F H L, Yu C L 2009 Nat Phys. 5 475

    [11]

    Vedantam S, Lee H, Tang J 2009 Nano Lett. 9 3447

    [12]

    Fang Z Y, Zhu X 2011 Acta Phys. Sin. 60 594 (in Chinese) [方哲宇, 朱星 2011 物理学报 60 594]

    [13]

    Yang S Y, Chen W B, Nelson R 2009 Opt. Lett. 34 3047

    [14]

    Gorodetski Y, Niv A, Kleiner V, Hasman E 2008 Phy. Rev. Lett. 101 043903

    [15]

    Chen W B, Abeysinghe D C, Nelson R L 2010 Nano Lett. 10 2075

    [16]

    Miao J J, Wang Y S, Guo C F 2011 Plasmonics 6 235

    [17]

    Tomoki O, Shintaro M 2006 Opt. Express 14 6285

    [18]

    Tsai W Y, Huang J S, Huang C B 2013 Nano Lett. 10 1021

    [19]

    Palik E D 1985 Handbook of optical constants of solids(New York: Academic) pp60

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [10] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [11] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [12] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [13] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [14] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [15] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [16] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [17] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [18] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [19] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
计量
  • 文章访问数:  4185
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2015-05-10
  • 刊出日期:  2015-10-05

阿基米德螺旋微纳结构中的表面等离激元聚焦

  • 1. 北京大学物理学院, 人工微结构与介观物理国家重点实验室, 北京 100871;
  • 2. 北京大学前沿交叉学科研究院, 纳米科学与技术中心, 北京 100871;
  • 3. 国家纳米科学中心, 北京 100190
  • 通信作者: 朱星, zhuxing@pku.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2012CB933004, 2015CB932403)、国家自然科学基金(批准号:61176120, 61378059, 60977015, 61422501, 11374023)、北京自然科学基金(批准号:L140007)资助的课题.

摘要: 研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回