搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子在碳化硅中不同深度的非电离能量损失

申帅帅 贺朝会 李永宏

引用本文:
Citation:

质子在碳化硅中不同深度的非电离能量损失

申帅帅, 贺朝会, 李永宏

Non-ionization energy loss of proton in different regions in SiC

Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong
PDF
导出引用
  • 利用蒙特卡罗方法,应用Geant4程序,模拟计算了1500 MeV质子在碳化硅材料中的非电离能量损失,并研究了不同种类的初级反冲原子对非电离能量损失的贡献.模拟结果表明:在相同质子辐照下,碳化硅材料中的非电离能量损失要比硅、镓等半导体材料更小,说明碳化硅器件的稳定性更好,抗位移损伤能力更强;当靶材料足够厚时,在不同能量质子辐照下,材料损伤最严重的区域会随着质子入射能量的增加从质子射程末端逐渐前移到材料表面;不同种类的初级反冲原子对非电离能量损失的贡献表明,在低能质子辐照下,28Si和12C是位移损伤的主要原因,而随着质子能量的增加,通过核反应等过程产生的次级离子迅速增多,并对材料浅层造成严重的位移损伤.
    Silicon carbide (SiC), as a representative of the third-generation semiconductor materials, is widely used in some fields which may suffer strong radiation such as in the cases of military affairs, aerospace and reactor. SiC possesses the superior radiation-resistance characteristic. However, SiC under the proton irradiation generate a lot of defects, resulting in degradation of device performance and even complete loss of its function. Therefore, the study on the irradiation damage to SiC under proton irradiation possesses important significance. A large number of studies have shown that for most of electronic devices and different types of incident particles, the degradation of device performance caused by displacement damage is linearly dependent on non-ionizing energy loss (NIEL), so the displacement damage can be evaluated by NIEL. In this work, the Monte Carlo software Geant4 is used to simulate the relationship between NIEL and proton energy, and the variation of NIEL with the depth of the material and the contribution of different types of primary recoil atoms to the total NIEL are also studied. The NIEL simulation results show that the NIEL in SiC material is less than that in Si and Ga semiconductor material under the same proton irradiation, proving that the stability and the radiation-resistance of SiC are stronger. The simulation results of NIEL at different depths show that the most serious damage regions of the material under different energy protons are diverse. Under the irradiation of low energy proton, the most serious region of the displacement damage occurs at the end of the proton range. With the increase of proton energy, the worst damage region of material will gradually move from the end of the proton range to the surface of SiC material. According to the contribution of different types of primary recoil atoms to the total NIEL, when the energy of the incident proton is low, the displacement damage of the proton in the SiC is mainly caused by 28Si and 12C, and the damage caused by 28Si is obviously higher than that by 12C. As the energy of proton increases, the 28Si and 12C are still the main causes of Bragg peak of the NIEL at the end of the proton range, but the number of ions generated by nuclear reactions increases accordingly, and the displacement damage caused by these ions increases in the shallow area of SiC, leading the surface of the material to be the worst damaged region. The combination of the two factors caused the most serious damage region moves from the end of the proton range to the surface of the material with the increase of proton energy. The results of this study are useful for the application of SiC devices to irradiation environment.
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    [1]

    Liu X F, Chen Y 2015 Adv. Mater. Ind. 10 12 (in Chinese) [刘兴昉, 陈宇 2015 新材料产业 10 12]

    [2]

    Hao J Q, Gao W, Zhao L B, Cao J S, L X, Ruan J 2016 Adv. Mater. Ind. 11 6 (in Chinese) [郝建群, 高伟, 赵璐冰, 曹峻松, 吕欣, 阮军 2016 新材料产业 11 6]

    [3]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 物理学报 58 3302]

    [4]

    Kimoto T 2015 Jpn J. Appl. Phys. 54 040103

    [5]

    Lebedev A A, Chelnokov V E 1999 Semiconductor 33 999

    [6]

    Zhang Y J, Yin Z P, Su Y, Wang D J 2018 Chin. Phys. B 27 047103

    [7]

    Li M, Zhou X, Yang H, Du S, Huang Q 2018 Scr. Mater. 143 149

    [8]

    Tang D, He C X, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209 (in Chinese) [唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209]

    [9]

    Chilingarov A, Meyer J S, Sloan T 1997 Nucl. Instrum. Meth. Phys. Res. 395 35

    [10]

    Lazanu S, Lazanu I, Biggeri U, Borchi E, Bruzzi M 1997 Nucl. Instrum. Meth. Phys. Res. 394 232

    [11]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [12]

    Zu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102 (in Chinese) [朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102]

    [13]

    Tang X X, Luo W Y, Wang C Z, He X F, Zha Y Z, Fan S, Huang X L 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙 2008 物理学报 57 1266]

    [14]

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529 (in Chinese) [路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529]

    [15]

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222 (in Chinese) [郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222]

    [16]

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High. Energ. Phys. Nucl. 25 365 (in Chinese) [陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365]

    [17]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [18]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [19]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. Phys. Res. 260 529

    [20]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2011 Radiat. Phys. Chem. 62 301

    [21]

    Dale C J, Chen L, Mcnulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 1974

    [22]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

  • [1]

    Liu X F, Chen Y 2015 Adv. Mater. Ind. 10 12 (in Chinese) [刘兴昉, 陈宇 2015 新材料产业 10 12]

    [2]

    Hao J Q, Gao W, Zhao L B, Cao J S, L X, Ruan J 2016 Adv. Mater. Ind. 11 6 (in Chinese) [郝建群, 高伟, 赵璐冰, 曹峻松, 吕欣, 阮军 2016 新材料产业 11 6]

    [3]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 物理学报 58 3302]

    [4]

    Kimoto T 2015 Jpn J. Appl. Phys. 54 040103

    [5]

    Lebedev A A, Chelnokov V E 1999 Semiconductor 33 999

    [6]

    Zhang Y J, Yin Z P, Su Y, Wang D J 2018 Chin. Phys. B 27 047103

    [7]

    Li M, Zhou X, Yang H, Du S, Huang Q 2018 Scr. Mater. 143 149

    [8]

    Tang D, He C X, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209 (in Chinese) [唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209]

    [9]

    Chilingarov A, Meyer J S, Sloan T 1997 Nucl. Instrum. Meth. Phys. Res. 395 35

    [10]

    Lazanu S, Lazanu I, Biggeri U, Borchi E, Bruzzi M 1997 Nucl. Instrum. Meth. Phys. Res. 394 232

    [11]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [12]

    Zu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102 (in Chinese) [朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102]

    [13]

    Tang X X, Luo W Y, Wang C Z, He X F, Zha Y Z, Fan S, Huang X L 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙 2008 物理学报 57 1266]

    [14]

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529 (in Chinese) [路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529]

    [15]

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222 (in Chinese) [郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222]

    [16]

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High. Energ. Phys. Nucl. 25 365 (in Chinese) [陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365]

    [17]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [18]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [19]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. Phys. Res. 260 529

    [20]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2011 Radiat. Phys. Chem. 62 301

    [21]

    Dale C J, Chen L, Mcnulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 1974

    [22]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [2] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [6] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [15] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [16] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [17] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [18] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [19] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [20] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
计量
  • 文章访问数:  3654
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-06-14
  • 刊出日期:  2019-09-20

质子在碳化硅中不同深度的非电离能量损失

摘要: 利用蒙特卡罗方法,应用Geant4程序,模拟计算了1500 MeV质子在碳化硅材料中的非电离能量损失,并研究了不同种类的初级反冲原子对非电离能量损失的贡献.模拟结果表明:在相同质子辐照下,碳化硅材料中的非电离能量损失要比硅、镓等半导体材料更小,说明碳化硅器件的稳定性更好,抗位移损伤能力更强;当靶材料足够厚时,在不同能量质子辐照下,材料损伤最严重的区域会随着质子入射能量的增加从质子射程末端逐渐前移到材料表面;不同种类的初级反冲原子对非电离能量损失的贡献表明,在低能质子辐照下,28Si和12C是位移损伤的主要原因,而随着质子能量的增加,通过核反应等过程产生的次级离子迅速增多,并对材料浅层造成严重的位移损伤.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回