搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用

张晨 张海玉 郝会颖 董敬敬 邢杰 刘昊 石磊 仲婷婷 唐坤鹏 徐翔

引用本文:
Citation:

氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用

张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔

Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells

Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang
PDF
HTML
导出引用
  • 在钙钛矿电池中, ZnO纳米棒的垂直性是影响器件效率的关键因素. AZO(ZnO:Al)玻璃作为一种廉价的透明导电衬底, 由于与ZnO纳米棒无晶格失配, 有望获得最佳垂直性. 然而目前在大气环境下, 以AZO为衬底、ZnO纳米棒为电子传输层的钙钛矿太阳能电池还鲜有报道. 本文通过水热法制备ZnO纳米棒作为电子传输层, 系统研究不同条件对ZnO纳米棒的形貌及结晶性能的调控规律, 分析其微观生长机理. 并在此基础上于大气环境下制备太阳能电池, 将以AZO为衬底在大气条件下制备的钙钛矿光伏器件的最佳效率从目前文献报道的7.0%提高到9.63%. 这对丰富钙钛矿电池的设计思路及进一步降低成本具有重要意义.
    ZnO is a promising electron transport material. It has not only similar energy level position and physical properties to traditional TiO2, but also excellent light transmittance, conductivity, stability, low cost and low temperature preparation. Studies have shown that the one-dimensional nanostructured electron transport layer has a higher electron transport rate, provides a direct electron transport channel and avoids its being recombined at the grain boundaries, thereby improving carrier collection efficiency. It has also been reported that the electron transport rate of ZnO nanorods is significantly better than that of TiO2, showing their great potential applications. In perovskite solar cells, the verticality of ZnO nanorods is a key factor affecting device efficiency. The AZO (ZnO∶Al) glass, as an inexpensive transparent conductive substrate, is expected to obtain the best verticality because it has no lattice mismatch with ZnO nanorods. And in the field of perovskite solar cells, the light absorbing layer is usually prepared in a glove box and it has obviously not been industralized. However, there are few reports about perovskite solar cells prepared in atmospheric environment with AZO as substrate and ZnO nanorods as electron transport layer. And it is still much less efficient than the current perovskite solar cells with TiO2 as the electronic transport layer. It can be seen that further improving the efficiency of the structural battery prepared in the atmospheric environment is an urgent problem to be solved. In this paper, ZnO nanorods are prepared as an electron transport layer by the hydrothermal method. The effects of hydrothermal temperature, the number of seed layer, the precursor concentration, the substrate type, the hydrothermal time, and the other process parameters on the morphology and crystalline properties of ZnO nanorods are systematically studied, and the growth mechanism is analyzed. The results show that the length of the nanorods is mainly controlled by the hydrothermal time and hydrothermal temperature, and that the radial size is mainly determined by the number of seed layers and the concentration of the precursor solution. And the results also indicate that the verticality of ZnO nanorods’ growth is closely related to the substrate, and that the ZnO nanorods on the AZO substrate have the best growth verticality. On this basis, the perovskite solar cell is prepared in the atmospheric environment, and the optimal efficiency of the photovoltaic device prepared with AZO substrate increases from 7.0% reported in the literature to 9.63%. This is of great significance for enriching the design ideas of perovskite solar cells and further reducing costs.
      Corresponding author: Hao Hui-Ying, huiyinghaoL@cugb.edu.cn
    [1]

    Zhao Y Q, Ma Q, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M 2019 J. Phys. Condens. Matter. 32

    [3]

    Zhang J Y, Su J, Lin Z H, Liu M Y, Chang J J 2019 Appl. Phys. Lett. 114 181902Google Scholar

    [4]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B 2019 J. Mater. Chem. C 7 7433Google Scholar

    [5]

    Green M A, Ho-baillie A, Snaith H J 2014 Nat. Photonics. 8 506Google Scholar

    [6]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L 2015 Science 347 967Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc. 138 14750Google Scholar

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Hayase S 2014 J. Phys. Chem. Lett. 6 1004

    [10]

    Jung H S, Park N G 2015 Small 16 1613

    [11]

    Zhang P, Wu J, Zhang T, Wang Y, Liu D, Chen H 2018 Adv. Mater. 30 3

    [12]

    Tseng Z L, Chiang C H, Chang S H, Wu C G 2016 Nano. Energy. 28 2211

    [13]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [14]

    Wang Z L 2004 J. Phys. Condens. Matter. 16 R829Google Scholar

    [15]

    Liu H, Huang Z, Wei S, Zheng L, Gong Q 2016 Nanoscale 8 6209Google Scholar

    [16]

    Law M, Greene L E, Johnson J C 2005 Nat. Mater. 4 455Google Scholar

    [17]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P 2013 Chem. Commun. 49 11089Google Scholar

    [18]

    Wang H, Yan L, Liu J, Li J 2016 J. Mater. SCI-Mater. EL 27 6872Google Scholar

    [19]

    Ferrara V L, Maria A D, Rametta G, Noce M D, Veneri P D 2017 Mater. Res. Express. 4 355

    [20]

    郎集会, 李雪, 刘晓艳, 杨景海 2009 吉林师范大学学报(自然科学版) 30 35

    Lang J H, Li X, Liu X Y, Yang J H 2009 J. Jilin. Normal. Univ (Natural Science Edition) 30 35

  • 图 1  (a) 应用ZnO纳米棒作为ETL的钙钛矿型太阳能电池的结构示意图; (b) ZnO和TiO2电性能的比较; (c) ZnO, TiO2与其他材料在PSCs中的能级

    Fig. 1.  (a) Structural schematic diagram of perovskite solar cells using ZnO nanorods as ETL; (b) comparison of the electrical proper-ties of ZnO, TiO2; (c) the energy level of ZnO, TiO2, and other usually used materials in PSCs.

    图 2  不同水热温度下生长的氧化锌纳米棒表征 (a) XRD图谱; (b)稳态PL谱

    Fig. 2.  Characterization of (a) XRD spectrum and (b) steady-state PE spectrum of ZnO nanorods growing at different water thermal temperatures.

    图 3  不同籽晶层旋涂层数所制备的氧化锌纳米棒的正面SEM形貌图 (a) 3 层; (b) 5 层; (c) 7 层

    Fig. 3.  Positive SEM morphology of ZnO nanorods prepared from different seed crystal layers: (a) 3 layers; (b) 5 layers; (c) 7 layers

    图 4  在ITO衬底上利用不同浓度前驱液制备的ZnO纳米棒的SEM照片 (a) 0.01 mol/L; (b) 0.02 mol/L; (c) 0.03 mol/L; (d) PL谱

    Fig. 4.  SEM photograph of ZnO nanorods prepared on the ITO substrate using different concentrations of precursor fluids: (a) 0.01 mol/L; (b) 0.02 mol/L; (c) 0.03 mol/L; (d) PL spectrum.

    图 5  在不同衬底上所制备的氧化锌纳米棒SEM形貌图 (a) ITO衬底; (b) AZO衬底; (c) FTO衬底

    Fig. 5.  ZnO nanorods SEM morphology prepared on different substrates. (a) ITO; (b) AZO; (c) FTO.

    图 6  氧化锌纳米棒长度和直径随水热时间的变化SEM与折线图 (a) 1.5 h; (b) 2.5 h; (c) 3.5 h; (d) 5.0 h; (e) 6.0 h; (f) 7.0 h; (g) 8.0 h; (h) 9.0 h; (i) 10.0 h; (j) 折线图

    Fig. 6.  Changes of the length and diameter SEM of ZnO nanorods with water heat time: (a) 1.5 h; (b) 2.5 h; (c) 3.5 h; (d) 5.0 h; (e) 6.0 h; (f) 7.0 h; (g) 8.0 h; (h) 9.0 h; (i) 10.0 h; (j) line chart.

    图 7  (a)不同水热时间制备ZnO纳米棒作为ETL电池的J-V曲线; 不同水热时间的氧化锌纳米棒上钙钛矿的(b)稳态PL谱, (c)吸收谱

    Fig. 7.  (a) J-V curve of batteries with ZnO nanorods as ETL prepared at different hydrothermal times; (b) steady state PL spectrum and (c) absorption spectrum of perovskite on ZnO nanorods with different water heat time.

    图 8  不同水热时间的氧化锌纳米棒上生长的钙钛矿薄膜的表面形貌SEM图 (a) 2.5 h; (b) 5.0 h; (c) 8.0 h

    Fig. 8.  Surface morphology of perovskite thin films growing on ZnO nanorods at different hydrothermal times SEM diagram: (a) 2.5 h; (b) 5.0 h; (c) 8.0 h.

    表 1  不同水热温度条件下制备的氧化锌纳米棒的平均长度和直径

    Table 1.  Average length and diameter of ZnO nanobars prepared under different water temperature conditions.

    条件温度/℃平均直径/nm平均长度/nm
    1502847
    26033245
    37030550
    48031740
    59034948
    610032871
    下载: 导出CSV

    表 2  不同水热时间条件下所制备的氧化锌纳米棒的平均长度和直径

    Table 2.  Average length and diameter of zinc oxide nanorods prepared under different water heat time.

    条件衬底保温时间/h平均长度/nm平均直径/nm
    1AZO1.513276
    2AZO2.524492
    3AZO3.5503139
    4AZO5.0620121
    5AZO6.0722189
    6AZO7.0701136
    7AZO8.0866204
    8AZO9.0470135
    9AZO10.025594
    下载: 导出CSV

    表 3  不同氧化锌纳米棒水热时间所制备PSCs平均性能参数及最佳PCE

    Table 3.  Average performance parameters and champion PCE of PSCs from different water heat time of ZnO nanorods.

    水热条件/hScan directionsVoc/VJsc/mA·cm–2FF平均PCE/%最佳PCE/%
    2.5Reverse0.7718.510.476.717.96
    5.0Reverse0.8420.990.488.479.63
    8.0Reverse0.5217.150.433.856.00
    下载: 导出CSV
  • [1]

    Zhao Y Q, Ma Q, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M 2019 J. Phys. Condens. Matter. 32

    [3]

    Zhang J Y, Su J, Lin Z H, Liu M Y, Chang J J 2019 Appl. Phys. Lett. 114 181902Google Scholar

    [4]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B 2019 J. Mater. Chem. C 7 7433Google Scholar

    [5]

    Green M A, Ho-baillie A, Snaith H J 2014 Nat. Photonics. 8 506Google Scholar

    [6]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L 2015 Science 347 967Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc. 138 14750Google Scholar

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Hayase S 2014 J. Phys. Chem. Lett. 6 1004

    [10]

    Jung H S, Park N G 2015 Small 16 1613

    [11]

    Zhang P, Wu J, Zhang T, Wang Y, Liu D, Chen H 2018 Adv. Mater. 30 3

    [12]

    Tseng Z L, Chiang C H, Chang S H, Wu C G 2016 Nano. Energy. 28 2211

    [13]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [14]

    Wang Z L 2004 J. Phys. Condens. Matter. 16 R829Google Scholar

    [15]

    Liu H, Huang Z, Wei S, Zheng L, Gong Q 2016 Nanoscale 8 6209Google Scholar

    [16]

    Law M, Greene L E, Johnson J C 2005 Nat. Mater. 4 455Google Scholar

    [17]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P 2013 Chem. Commun. 49 11089Google Scholar

    [18]

    Wang H, Yan L, Liu J, Li J 2016 J. Mater. SCI-Mater. EL 27 6872Google Scholar

    [19]

    Ferrara V L, Maria A D, Rametta G, Noce M D, Veneri P D 2017 Mater. Res. Express. 4 355

    [20]

    郎集会, 李雪, 刘晓艳, 杨景海 2009 吉林师范大学学报(自然科学版) 30 35

    Lang J H, Li X, Liu X Y, Yang J H 2009 J. Jilin. Normal. Univ (Natural Science Edition) 30 35

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 1-11. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [5] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能. 物理学报, 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [6] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [8] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [12] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [13] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [14] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  9847
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-05-12
  • 上网日期:  2020-05-26
  • 刊出日期:  2020-09-05

/

返回文章
返回