搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮/硫共掺杂多孔碳纳米片的制备及其电化学性能

王桂强 刘洁琼 董伟楠 阎超 张伟

引用本文:
Citation:

氮/硫共掺杂多孔碳纳米片的制备及其电化学性能

王桂强, 刘洁琼, 董伟楠, 阎超, 张伟

Nitrogen/sulfur co-doped porous carbon nanosheets and its electrochemical performance

Wang Gui-Qiang, Liu Jie-Qiong, Dong Wei-Nan, Yan Chao, Zhang Wei
PDF
导出引用
  • 二维多孔碳材料能够提供较短的电解质扩散通道和较快的电子传输过程,因此在能量转换和储存装置中表现出优异的电化学性能.近年来的理论和实验研究表明,两元素共掺杂可使二维多孔碳材料的电化学性能得到明显提高.因此,共掺杂二维多孔碳材料的制备成为目前的研究热点之一.本文以甲基橙-FeCl3复合物为模板引发剂制备了甲基橙掺杂的聚吡咯纳米管,通过对聚吡咯纳米管与KOH混合物(重量比为1:2)在700 ℃进行热处理,制备了二维石墨烯状氮/硫共掺杂多孔碳纳米片.所制备的氮/硫共掺杂多孔碳纳米片相互连结,形成了多级孔结构.氮气吸附分析表明多级孔结构包含微孔、介孔和大孔,这使所制备的氮/硫共掺杂多孔碳纳米片具有较高的比表面积(1744.58 m2/g)和孔体积(1.01 cm3/g).共掺杂多孔碳纳米片中的掺杂氮以吡啶氮、吡咯氮和季胺氮形式存在,掺杂硫以噻吩硫和氧化态硫形式存在,二者之间的协同效应能够明显改善碳纳米片表面的浸润性,增加表面电化学活性点.这些特征使所制备的氮/硫共掺杂多孔碳纳米片表现出优异的电化学性能.用氮/硫共掺杂多孔碳纳米片制备的量子点敏化太阳能电池对电极,对多硫电解质再生反应的电催化活性与传统PbS对电极相近,所组装电池的光电转换效率可达到4.30%(100 mW/cm2).氮/硫共掺杂多孔碳纳米片作为超级电容器电极材料,以6 M(1 M=1 mol/L)KOH为电解质,电流密度为0.4 A/g,比电容达到312.8 F/g.即使电流密度增加到20 A/g,比电容仍达到200.6 F/g,表明其具有较好的倍率性能.
    Porous carbon materials have aroused extensive interest in the field of energy conversion and storage due to their high surface area, regulatable pore structure, high electrical conductivity and stability, and good electrochemical activity. Nevertheless, granular porous carbons usually result in the relatively long electrolyte-diffusion pathway, which seriously limits the ions transport and then damage the electrochemical performance. Two-dimensional (2D) carbon materials can solve this problem because they can provide short electrolyte-diffusion channel and realize the fast electron transport. On the other hand, dual-heteroatom codoping has been confirmed to be quite an effective approach to improving the electrochemical performance of carbon materials. Therefore, a simple and efficient synthesis of co-doped 2D porous carbon materials is highly attractive.
    In this work, nitrogen/sulfur co-doped porous carbon nanosheets (NSPCNs) are prepared from methyl orange (MO) doped polypyrrole (PPy) nanotubes by a thermal-treating process in the presence of KOH under N2 atmosphere. MO-doped PPy nanotubes are prepared through a self-degraded process by using MO-FeCl3 complex as the template initiator. In the thermal process, the combination of the dedoping derived from the interaction between MO and KOH, the pyrolysis of PPy, and KOH activation results in the exfoliation of PPy nanotubes and the formation of NSPCNs. Scanning electron microscopy and transmission electron microscopy analyses demonstrate that as-prepared NSPCNs interconnect to form a hierarchical porous architecture containing micropores, mesopores, and macropores, which provides the three-dimensional interconnected channel for electrolyte diffusion with little hindrance. The N2 sorption measurements indicate that NSPCNs have a high specific area of 1744.8 m2/g and volume of 1.01 cm3/g. The X-ray photoelectron spectroscopy measurements indicate that nitrogen and sulfur have been incorporated into the framework of the as-prepared carbon sample. The doped nitrogen is present in the form of pyridinic, pyrrolic, and quaternary state, and the doped sulfur appears in the form of C-Sn-S and-SOn-configuration. The synergistic effect of co-doped nitrogen and sulfur promote the redistribution of spin and charge density, which can greatly enhance the surface wettability and increase the electrochemical active sites of carbon materials. These features endow as-prepared NSPCNs with excellent electrochemical properties. Electrochemcial impedance spectroscopic measurements indicate that the charge transfer resistance of NSPCN in polysulfide electrolyte is 11.2 Ω·cm2, suggesting a very high electrocatalytic activity of NSPCNs for regenerating the polysulfide electrolyte. Under the illumination of 100 mW/cm-2, the NSPCNs' electrode-based quantum dot-sensitized solar cell achieves a conversion efficiency of 4.30%, which is comparable to that of the PbS electrode-based cell. Furthermore, NSPCNs display excellent capacitive performance. In 6 M KOH aqueous electrolyte, NSPCNs achieve a high specific capacitance of 312.8 F/g at a current density of 0.4 A/g. Even the current density increases to 20 A/g, the NSPCNs still maintain a specific capacitance of 200.6 F/g, indicating a good rate performance. Therefore, the as-prepared NSPCNs can be used as the high-performance electrode materials for quantum-dot sensitized solar cells and supercapacitors.
    • 基金项目: 国家自然科学基金(批准号:21273137)和辽宁省自然科学基金(批准号:201601011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21273137) and the Natural Science Foundation of Liaoning Province, China (Grant No. 201601011).
    [1]

    Kavan L 2014 Top Curr. Chem. 348 53

    [2]

    Wu M, Lin X, Wang T 2011 Energy Environ. Sci. 4 2308

    [3]

    Liu H, Song C, Zhang L 2006 J. Power Sources 155 95

    [4]

    Yun Y, Park M, Hong S 2015 ACS Appl. Mater. Interfaces 7 3684

    [5]

    Sevilla M, Fuertes A B 2014 ACS Nano 8 5069

    [6]

    Zhang D, Li X, Li H 2011 Carbon 49 5382

    [7]

    Wei W, Sun K, Hu Y 2016 J. Mater. Chem. A 4 12054

    [8]

    Jeon I, Choi H, Ju M J 2013 Scientific Report 3 2260

    [9]

    Hou J, Cao C, Idrees F 2015 ACS Nano 9 2556

    [10]

    Chen X, Xu X, Yang Z 2014 Nanoscale 6 13740

    [11]

    Zhang C, Mahmood N, Yin H 2013 Adv. Mater. 35 4932

    [12]

    Xue Y, Liu J, Chen H 2012 Angew. Chem. 124 12290

    [13]

    Yang W, Ma X, Xu X 2015 J. Power Sources 282 228

    [14]

    Fang H, Yu C, Ma T 2014 Chem. Commun. 50 3328

    [15]

    Liu Y, Wang Y, Zheng X 2017 Comput. Mater. Sci. 136 44

    [16]

    Liang J, Jiao Y, Jaroniec M 2012 Angew. Chem. 124 11664

    [17]

    Yan X, Liu Y, Fan X 2014 J. Power Sources 248 745

    [18]

    Yu C, Fang H, Liu Z 2016 Nano energy 25 184

    [19]

    Qu K, Zheng Y, Dai S 2016 Nano Energy 19 373

    [20]

    Sun L, Zhou H, Yao Y 2017 ACS Appl. Mater. Interfaces 9 26088

    [21]

    Yang X, Zhu Z, Dai T 2005 Macromol. Rapid Commun. 26 1736

    [22]

    Zhang Q, Han K, Li S, Li J, Ren K 2018 Nanoscale 10 2427

    [23]

    Lu S, Jin M, Zhang Y, Niu Y, Li C 2017 Adv. Energy Mater. 7 1702545

    [24]

    Jiao S, Du J, Long D 2017 J. Phys. Chem. Lett. 8 559

    [25]

    Zhang H, Yang C, Du Z 2017 J. Mater. Chem. A 5 1614

    [26]

    Wang Y, Zhang Q, Huang F, Zhen Y, Tao X, Cao G 2018 Nano Energy 44 135

    [27]

    Fan X, Yu C, Yang J 2015 Adv. Energy Mater. 5 1401761

    [28]

    Yang W, Ding F, Sang L, Ma Z, Shao G 2017 Carbon 111 419

    [29]

    Hao P, Zhao Z, Leng Y 2015 Nano Energy 15 9

    [30]

    Ling Z, Wang Z, Zhang M 2016 Adv. Funct. Mater. 26 111

    [31]

    Han J, Xu G, Dou H 2015 Chem. Eur. J. 21 2310

    [32]

    Zhang D, Han M, Li Y 2016 Electrochim. Acta 222 141

    [33]

    Tian J, Zhang H, Liu Z, Qin G, Li Z 2018 Int. J. Hydrogen Energy 43 1596

  • [1]

    Kavan L 2014 Top Curr. Chem. 348 53

    [2]

    Wu M, Lin X, Wang T 2011 Energy Environ. Sci. 4 2308

    [3]

    Liu H, Song C, Zhang L 2006 J. Power Sources 155 95

    [4]

    Yun Y, Park M, Hong S 2015 ACS Appl. Mater. Interfaces 7 3684

    [5]

    Sevilla M, Fuertes A B 2014 ACS Nano 8 5069

    [6]

    Zhang D, Li X, Li H 2011 Carbon 49 5382

    [7]

    Wei W, Sun K, Hu Y 2016 J. Mater. Chem. A 4 12054

    [8]

    Jeon I, Choi H, Ju M J 2013 Scientific Report 3 2260

    [9]

    Hou J, Cao C, Idrees F 2015 ACS Nano 9 2556

    [10]

    Chen X, Xu X, Yang Z 2014 Nanoscale 6 13740

    [11]

    Zhang C, Mahmood N, Yin H 2013 Adv. Mater. 35 4932

    [12]

    Xue Y, Liu J, Chen H 2012 Angew. Chem. 124 12290

    [13]

    Yang W, Ma X, Xu X 2015 J. Power Sources 282 228

    [14]

    Fang H, Yu C, Ma T 2014 Chem. Commun. 50 3328

    [15]

    Liu Y, Wang Y, Zheng X 2017 Comput. Mater. Sci. 136 44

    [16]

    Liang J, Jiao Y, Jaroniec M 2012 Angew. Chem. 124 11664

    [17]

    Yan X, Liu Y, Fan X 2014 J. Power Sources 248 745

    [18]

    Yu C, Fang H, Liu Z 2016 Nano energy 25 184

    [19]

    Qu K, Zheng Y, Dai S 2016 Nano Energy 19 373

    [20]

    Sun L, Zhou H, Yao Y 2017 ACS Appl. Mater. Interfaces 9 26088

    [21]

    Yang X, Zhu Z, Dai T 2005 Macromol. Rapid Commun. 26 1736

    [22]

    Zhang Q, Han K, Li S, Li J, Ren K 2018 Nanoscale 10 2427

    [23]

    Lu S, Jin M, Zhang Y, Niu Y, Li C 2017 Adv. Energy Mater. 7 1702545

    [24]

    Jiao S, Du J, Long D 2017 J. Phys. Chem. Lett. 8 559

    [25]

    Zhang H, Yang C, Du Z 2017 J. Mater. Chem. A 5 1614

    [26]

    Wang Y, Zhang Q, Huang F, Zhen Y, Tao X, Cao G 2018 Nano Energy 44 135

    [27]

    Fan X, Yu C, Yang J 2015 Adv. Energy Mater. 5 1401761

    [28]

    Yang W, Ding F, Sang L, Ma Z, Shao G 2017 Carbon 111 419

    [29]

    Hao P, Zhao Z, Leng Y 2015 Nano Energy 15 9

    [30]

    Ling Z, Wang Z, Zhang M 2016 Adv. Funct. Mater. 26 111

    [31]

    Han J, Xu G, Dou H 2015 Chem. Eur. J. 21 2310

    [32]

    Zhang D, Han M, Li Y 2016 Electrochim. Acta 222 141

    [33]

    Tian J, Zhang H, Liu Z, Qin G, Li Z 2018 Int. J. Hydrogen Energy 43 1596

  • [1] 郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马. Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究. 物理学报, 2022, 71(17): 178201. doi: 10.7498/aps.71.20220473
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [5] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 应力对锂离子电池中空碳包覆硅负极电化学性能的影响. 物理学报, 2019, 68(12): 120201. doi: 10.7498/aps.68.20182279
    [6] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [7] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] 王桂强, 侯硕, 张娟, 张伟. 氮掺杂石墨烯纳米片的制备及其电化学性能. 物理学报, 2016, 65(17): 178102. doi: 10.7498/aps.65.178102
    [9] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [10] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [11] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] 张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才. 电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究. 物理学报, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [13] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [15] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [17] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [20] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
计量
  • 文章访问数:  6453
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-13
  • 修回日期:  2018-09-08
  • 刊出日期:  2018-12-05

/

返回文章
返回