搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机铵盐表面稳定化CsPbI2Br全无机钙钛矿

刘晓敏 李亦回 王兴涛 赵一新

引用本文:
Citation:

有机铵盐表面稳定化CsPbI2Br全无机钙钛矿

刘晓敏, 李亦回, 王兴涛, 赵一新

Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite

Liu Xiao-Min, Li Yi-Hui, Wang Xing-Tao, Zhao Yi-Xin
PDF
HTML
导出引用
  • 有机-无机杂化钙钛矿中的有机阳离子组分具有在光照和加热条件下本征的化学不稳定性, 而全无机钙钛矿有望从根本上解决组分稳定性问题. 但是, 全无机钙钛矿在湿度条件下, 极易相变为非光学活性的δ相. 本文以CsPbI2Br全无机钙钛矿为对象, 研究不同碳链长度的有机铵盐表面处理对于钙钛矿湿稳定性和器件光电性能的影响. 实验结果表明, 有机铵盐碳链的增长显著改善钙钛矿相稳定性. 其中, 当用碘化丁铵处理时, CsPbI2Br全无机钙钛矿表现出最佳的湿稳定性. 随着碘化丁铵的处理浓度的增加, 钙钛矿的湿稳定性进一步改善. 当用适宜浓度的碘化丁铵处理CsPbI2Br薄膜时, 钙钛矿层表层的丁铵阳离子对电荷传输不会有明显阻碍, 可以获得优良的器件效率. 总之, 适宜的有机阳离子层既能提高全无机钙钛矿的湿稳定性, 又能改善其光伏性能.
    All-inorganic perovskite cesium lead halides with superior stability, suitable bandgap and high absorption efficient have become a promising candidate for photovoltaic application. In all-inorganic cesium lead halide perovskites, CsPbX3 (X = Br, I) exhibits excellent photoelectric properties, which are similar to those of organic-inorganic hybrid perovskites. The CsPbI3 faces a challenge of unideal tolerant factor for perovskite phase while CsPbI3–xBrx has better tolerant factor. Among them, CsPbI2Br is one of most popular candidates because of its good thermal stability. Nevertheless, CsPbI2Br shows instability due to the phase transition caused by moisture and lower efficiency because of defects. For all inorganic perovskite devices, the alkyl chain length of surface treatment agent should be taken into account when using organic cationic passivation method. In this paper, CsPbI2Br perovskite is treated with different organic ammonium salts to enhance its phase stability. The experimental results show that α-phase CsPbI2Br is more stable with the increase of the alkyl chain length. Butylamine iodine (BAI) among three kinds of surface treating agents is proved to have the best defect passivation and phase stabilization effect. With the increase of alkyl chain length, the hydrophobicity of the organic molecular layer increases, which plays a crucial role in protecting optically active CsPbI2Br. Meanwhile, it is found that the stability of perovskite is enhanced with the concentration of the BAI solution increasing. This should be related to the organic cation termination formed on the surface of CsPbI2Br film. Solar cell devices based on the CsPbI2Br thin films treated with different concentrations of BAI are assembled and then the effect of organic ion surface treatment on the photoelectric performance of batteries is further explored. The experimental results show that when the concentration of BAI is relatively high (4 mg/mL and 8 mg/mL), the device’s photovoltaic performance decreases especially the photocurrent obviously decreases, while the post-treatment process using 2 mg/mL BAI will enhance not only the phase stability but also the photovoltaic parameters after defect passivation. Considering both humidity resistance and device efficiency, this work demonstrates that the CsPbI2Br thin film with suitable BAI treatment can improve the wet stability of perovskite, and enhance the photovoltaic performance.
      通信作者: 赵一新, yixin.zhao@sjtu.edu.cn
      Corresponding author: Zhao Yi-Xin, yixin.zhao@sjtu.edu.cn
    [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Lin Q Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photon. 9 106Google Scholar

    [3]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [6]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [8]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [9]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [10]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [11]

    Laboratory NREL https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf [2019-03-04]

    [12]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [13]

    Nenon D P, Christians J A, Wheeler L M, Blackburn J L, Sanehira E M, Dou B J, Olsen M L, Zhu K, Berrya J J, Luther J M 2016 Energ. Environ. Sci. 9 2072Google Scholar

    [14]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Horantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [15]

    Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67Google Scholar

    [16]

    Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Lau C F J, Deng X F, Ma Q S, Zheng J H, Yun J S, Green M A, Huang S J, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573Google Scholar

    [19]

    Niezgoda J S, Foley B J, Chen A Z, Choi J J 2017 ACS Energy Lett. 2 1043Google Scholar

    [20]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946Google Scholar

    [21]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [22]

    Moller C K 1958 Nature 182 1436

    [23]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [24]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [25]

    Mariotti S, Hutter O S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [26]

    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar

    [27]

    Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X 2018 Joule 2 2065Google Scholar

    [28]

    Yoo H S, Park N G 2018 Sol. Energ. Mat. Sol. C. 179 57Google Scholar

    [29]

    Li N, Zhu Z L, Chueh C C, Liu H B, Peng B, Petrone A, Li X S, Wang L D, Jen A K Y 2017 Adv. Energy Mater. 7 1601307Google Scholar

  • 图 1  未处理、EAI、PAI和BAI处理后的CsPbI2Br薄膜 (a) 紫外可见吸收光谱(新制); (b) XRD图谱; (c) 紫外可见吸收光谱(35% RH, 48 h); (d) XRD图谱(35% RH, 48 h)

    Fig. 1.  (a) UV-vis spectra and (b) XRD patterns of CsPbI2Br films under EtOAc, EAI, PAI, BAI treatments, respectively. After placed in 35% RH for 48 h, (c) UV-vis spectra and (d) XRD patterns of CsPbI2Br films under EtOAc, EAI, PAI, BAI treatments, respectively.

    图 2  在35% RH空气环境下, 不同浓度BAI处理后CsPbI2Br薄膜在不同暴露时间时的紫外可见吸收光谱 (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h

    Fig. 2.  UV-visible absorption spectra of CsPbI2Br films under different BAI treatments exposed to 35% RH environment in air after various exposure time: (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h.

    图 3  在35% RH空气环境下, 不同浓度BAI处理后CsPbI2Br薄膜在不同暴露时间时的XRD图谱 (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h

    Fig. 3.  XRD patterns of CsPbI2Br films under different BAI treatments exposed to 35% RH environment in air after various exposure time: (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h.

    图 4  不同浓度BAI处理后CsPbI2Br 薄膜的SEM图谱 (a) 0 mg/mL; (b) 2 mg/mL; (c) 4 mg/mL; (d) 8 mg/mL

    Fig. 4.  SEM images of CsPbI2Br films under the various BAI (EtOAc) treatments: (a) 0 mg/mL; (b) 2 mg/mL; (c) 4 mg/mL; (d) 8 mg/mL

    图 5  不同浓度BAI处理CsPbI2Br钙钛矿太阳能电池伏安特性曲线

    Fig. 5.  Voltage-current characteristics of CsPbI2Br perovskite solar cells under different BAI treatments.

    表 1  不同浓度BAI处理后CsPbI2Br钙钛矿太阳能电池的光伏参数(取32个样品均值)

    Table 1.  Photovoltaic parameters of CsPbI2Br perovskite solar cells under different BAI treatments (average of 32 devices)

    处理方式Jsc/mA·cm–2Uoc/VFF/%PCE/%
    0 mg/mL BAI15.7 ± 0.131.05 ± 0.01569 ± 311.4 ± 0.6
    2 mg/mL BAI15.8 ± 0.11.07 ± 0.0168 ± 1.811.6 ± 0.4
    4 mg/mL BAI14.3 ± 0.11.05 ± 0.0168.5 ± 2.210.3 ± 0.37
    8 mg/mL BAI10.7 ± 0.141.04 ± 0.01366 ± 2.77.5 ± 0.5
    下载: 导出CSV
  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Lin Q Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photon. 9 106Google Scholar

    [3]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [6]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [8]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [9]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [10]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [11]

    Laboratory NREL https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf [2019-03-04]

    [12]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [13]

    Nenon D P, Christians J A, Wheeler L M, Blackburn J L, Sanehira E M, Dou B J, Olsen M L, Zhu K, Berrya J J, Luther J M 2016 Energ. Environ. Sci. 9 2072Google Scholar

    [14]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Horantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [15]

    Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67Google Scholar

    [16]

    Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Lau C F J, Deng X F, Ma Q S, Zheng J H, Yun J S, Green M A, Huang S J, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573Google Scholar

    [19]

    Niezgoda J S, Foley B J, Chen A Z, Choi J J 2017 ACS Energy Lett. 2 1043Google Scholar

    [20]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946Google Scholar

    [21]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [22]

    Moller C K 1958 Nature 182 1436

    [23]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [24]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [25]

    Mariotti S, Hutter O S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [26]

    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar

    [27]

    Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X 2018 Joule 2 2065Google Scholar

    [28]

    Yoo H S, Park N G 2018 Sol. Energ. Mat. Sol. C. 179 57Google Scholar

    [29]

    Li N, Zhu Z L, Chueh C C, Liu H B, Peng B, Petrone A, Li X S, Wang L D, Jen A K Y 2017 Adv. Energy Mater. 7 1601307Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 1-11. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [5] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [6] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [8] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [14] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [15] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  11883
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-04
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回