搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁光平面波导的单向传播特性

李航天 王智 王慧莹 崔粲 李智勇

引用本文:
Citation:

磁光平面波导的单向传播特性

李航天, 王智, 王慧莹, 崔粲, 李智勇

Properties of one-way propagation inthe magneto-optical planar waveguide

Li Hang-Tian, Wang Zhi, Wang Hui-Ying, Cui Can, Li Zhi-Yong
PDF
HTML
导出引用
  • 表面磁等离子体(surfacemagnetoplasmons, SMPs)是一种在电介质和偏置磁场作用下磁光材料界面处传播的近场电磁波. 其独特的非互易传播特性引起了大量科研工作的关注, 但在具体的波导结构设计上仍存在很多问题. 本文研究了一种银-硅-磁光材料的3层平面波导结构, SMPs在磁光材料和硅的界面处传播, 发现在特定的频率范围内, SMPs的基模及高阶模式均具有正向或反向的单向传播特性. 分别计算了旋磁与旋电材料平面波导的色散方程, 研究了硅层厚度与外加磁场对能带结构及SMPs单向传播区域的影响, 发现无论是旋磁或旋电材料的结构, 硅层厚度的增加使高阶模式使高阶模式出现在更低的频率位置, 使单向传输带宽变小甚至消失, 外加磁场的变大使磁光材料的能带结构频率增大的同时带隙中也引入了高阶模式. 计算了2种磁光材料平面波导的正向和反向的单向传播带宽宽度, 发现旋磁材料YIG的单向SMPs模式出现在GHz波段, 最大单向带宽可达到2.45 GHz; 旋电材料InSb的单向SMPs模式出现在THz波段, 最大单向带宽达到3.9 THz.
    Surface magnetoplasmons (SMPs) is a kind of near-field electromagnetic wave, which propagates at the interface of dielectricand magneto-optical material under the action of biased magnetic field. Because SMPs have excellent anti-interference and backscattering-immune properties, it has attracted wide attention of researchers in recent years, but there are still many problems in the design of waveguide structures. When electromagnetic waves propagate in magneto-optical materials, the faraday rotation effect makes the bias magnetic field and the magnetic field vector (or electrical displacement vector) not in the same direction, so the anti-angle elements of the second-order matrix of magnetic permeability (or dielectric constant) are asymmetric. This asymmetrymakes electromagnetic waves non-reciprocal when propagating in specific directions in magneto-optical materials, and can even achieve one-way propagation in a certain frequency range. In this paper, a structure of three-layerplanar waveguide with silver, silicon, and magneto-optical material is studied. SMPs propagate at the interface between silicon and magneto-optical materials. This work numerically calculates the dispersion relation of the waveguide and the band gap of the magneto-optical material. It is found that both the fundamental mode and the higher-order mode of SMPs have one-way propagation characteristics in forward or backward directionwithin a specific frequency range. The dispersion relation of the planar waveguides with gyromagnetic material andgyroelectricmaterial are calculated respectively. As a result, the thickness of silicon layer and the external magnetic field have significant influence on bulk mode and the one-way propagation region of SMPs. By increasing the thickness of the silicon layer or increasing the intensity of the magnetic field, the higher-order mode can appear at the lower frequency region, thus compressing the one-way propagation region or even losing the one-way propagation mode. The one-way propagation bandwidth of planar waveguideswith gyromagnetic material YIG and gyroelectric material InSbare calculated. Bycalculating the dispersion relation of the waveguide SMPs and the band gap of the magneto-optical material for each group of magnetic field and the thickness of Si, the colormap of YIG waveguideand InSbwaveguide under 400–2000Oe magnetic field and 0.1–​​​​​​​1 T magnetic field are obtained. As a result, the one-way mode of YIG waveguide appears in GHz band, and the maximum bandwidth for both forward and backward one-way propagation is 2.45 GHz. While, the one-way mode of InSbwaveguide appears in THz band, the maximum one-way propagation bandwidth in forward and backward directions are 3.9 THz and 3.12 THz. The research results in this paper are of great significance for the design and fabrication of non-reciprocal waveguides with one-waypropagation characteristics.
      通信作者: 王智, zhiwang@bjtu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61571035)
      Corresponding author: Wang Zhi, zhiwang@bjtu.edu.cn
    [1]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Raghu S, Haldane F D M 2006 Phys. Rev. A 78 033834

    [3]

    Hartstein A, Burstein E, Maradudin A A, Brewer R, Wallis R F 1973 J. Phys. C 6 1266Google Scholar

    [4]

    Brion J J, Wallis R F, Hartstein A, Burstein E 1972 Phys. Rev. Lett. 28 1455Google Scholar

    [5]

    Jiang C, Zhu H 2010 Opt. Express 18 006914Google Scholar

    [6]

    麦尔 著 (张彤 译) 2015 等离激元学—基础与应用 (南京: 东南大学出版社) 第14−23页

    Maier S A (translated by Zhang T) 2015 Plasmonics: Fundamentas and Applications (Nanjing: Southeast University Press) pp14−23 (in Chinese)

    [7]

    Khanikaev A B, Baryshev A V, Inoue M, Kivshar Y S 2009 Appl. Phys. Lett. 95 011101Google Scholar

    [8]

    Kushwaha M S, Halevi P 1988 Phys. Rev. B 38 12428Google Scholar

    [9]

    Shoji Y, Mizumoto T 2014 Sci. Technol. Adv. Mat. 15 014602Google Scholar

    [10]

    ChenS, Fan F, Wang X, Wu P, Zhang H, Chang S 2015 Opt. Express 23 001015Google Scholar

    [11]

    You Y, Deng X, Shen L, Wu J J, Yang T J 2016 Plasmonics 12 399

    [12]

    Huang D, Pintus P, Zhang C, Paul M, Yuya S, Tetsuya M 2017 Optica 4 000023Google Scholar

    [13]

    Fei F, ChuanZX, Jie R C, Jiang C S 2018 Opt. Lett. 43 000687Google Scholar

    [14]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Express 20 010071Google Scholar

    [15]

    Shen L F, You Y, Wang Z Y, Deng X H 2015 Opt. Express 23 000950Google Scholar

    [16]

    Kwiecien P, Richter I, Kuzmiak V, Ctyroky J 2017 J. Opt. Soc. Am. A 34 000892Google Scholar

    [17]

    王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆 2019 物理学报 68 154203Google Scholar

    Wang H Y, Wang Z, Cui C, Li H T, Li Q, Zhan X K, Wang J, Wu C Q 2019 Acta Phys. Sin. 68 154203Google Scholar

    [18]

    Tien M C, Mizumoto T, Pintus P, Kromer H, Bowers J E 2011 Opt. Express 19 011740Google Scholar

    [19]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar

    [20]

    Qianyi M U, Fan F, Chen S, Xu S T, Xiong C Z, Zhang X, Wang X H, Chang S J 2019 Photonics Res. 7 000325Google Scholar

    [21]

    波扎 著 (张肇仪 译) 2015 微波工程 (第3版) (北京: 电子工业出版社) 第380−386页

    Pozar D M (translated by Zhang Z Y)2015 Microwave Engineering (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp380−386 (in Chinese)

  • 图 1  3层磁光平面波导结构

    Fig. 1.  Structure of three layers magneto-optical planar waveguide.

    图 2  磁流线源激励的单向传播模式, 图中显示电场振幅沿传播方向的演化. (Si厚度为9.6 μm, 磁光材料为8 μm厚的InSb, 外加磁场强度为0.3 T, 电磁波频率为1.56 THz)

    Fig. 2.  The one-way propagation mode of the magnetic current source excitation, the figure shows the evolution of the electric field amplitude along the propagation direction. (The thickness of the Si and magneto-optical materials InSb are 0.6 μm and 8 μm, the applied magnetic field strength is 0.3 T, and the electromagnetic frequency is 1.56 THz.)

    图 3  旋磁平面波导的色散曲线 (a)−(c) H0 = 600 Oe, d = 0.08λm, 0.13λm, 0.25λm; (d) H0 = 2600 Oe, d = 0.08λm

    Fig. 3.  Dispersion curve of the gyromagnetic plane waveguide (a)−(c) H0 = 600 Oe, d = 0.08λm, 0.13λm, 0.25λm; (d) H0 = 2600 Oe, d = 0.08λm

    图 4  旋电平面波导的色散曲线 (a)−(c) B0 = 0.3 T, d = 0.08λp, 0.13λp, 0.2λp; (d) B0 = 1.5 T, d = 0.08λp

    Fig. 4.  Dispersion curve of the gyroelectric plane waveguide (a)−(c) B0 = 0.3T, d = 0.08λp, 0.13λp, 0.2λp; (d) B0 = 1.5 T, d = 0.08λp

    图 5  旋磁波导单向带宽 (a)正向单向传播模式; (b)反向单向传播模式

    Fig. 5.  One-way propagation mode bandwidth of the gyromagnetic waveguide (a) Forward one-way propagation mode; (b) Backward one-way propagation mode

    图 6  旋电波导单向带宽 (a)正向单向传播模式; (b)反向单向传播模式

    Fig. 6.  One-way propagation mode bandwidth of the gyroelectric waveguide (a) Forward one-way propagation mode; (b) Backward one-way propagation mode

  • [1]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Raghu S, Haldane F D M 2006 Phys. Rev. A 78 033834

    [3]

    Hartstein A, Burstein E, Maradudin A A, Brewer R, Wallis R F 1973 J. Phys. C 6 1266Google Scholar

    [4]

    Brion J J, Wallis R F, Hartstein A, Burstein E 1972 Phys. Rev. Lett. 28 1455Google Scholar

    [5]

    Jiang C, Zhu H 2010 Opt. Express 18 006914Google Scholar

    [6]

    麦尔 著 (张彤 译) 2015 等离激元学—基础与应用 (南京: 东南大学出版社) 第14−23页

    Maier S A (translated by Zhang T) 2015 Plasmonics: Fundamentas and Applications (Nanjing: Southeast University Press) pp14−23 (in Chinese)

    [7]

    Khanikaev A B, Baryshev A V, Inoue M, Kivshar Y S 2009 Appl. Phys. Lett. 95 011101Google Scholar

    [8]

    Kushwaha M S, Halevi P 1988 Phys. Rev. B 38 12428Google Scholar

    [9]

    Shoji Y, Mizumoto T 2014 Sci. Technol. Adv. Mat. 15 014602Google Scholar

    [10]

    ChenS, Fan F, Wang X, Wu P, Zhang H, Chang S 2015 Opt. Express 23 001015Google Scholar

    [11]

    You Y, Deng X, Shen L, Wu J J, Yang T J 2016 Plasmonics 12 399

    [12]

    Huang D, Pintus P, Zhang C, Paul M, Yuya S, Tetsuya M 2017 Optica 4 000023Google Scholar

    [13]

    Fei F, ChuanZX, Jie R C, Jiang C S 2018 Opt. Lett. 43 000687Google Scholar

    [14]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Express 20 010071Google Scholar

    [15]

    Shen L F, You Y, Wang Z Y, Deng X H 2015 Opt. Express 23 000950Google Scholar

    [16]

    Kwiecien P, Richter I, Kuzmiak V, Ctyroky J 2017 J. Opt. Soc. Am. A 34 000892Google Scholar

    [17]

    王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆 2019 物理学报 68 154203Google Scholar

    Wang H Y, Wang Z, Cui C, Li H T, Li Q, Zhan X K, Wang J, Wu C Q 2019 Acta Phys. Sin. 68 154203Google Scholar

    [18]

    Tien M C, Mizumoto T, Pintus P, Kromer H, Bowers J E 2011 Opt. Express 19 011740Google Scholar

    [19]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar

    [20]

    Qianyi M U, Fan F, Chen S, Xu S T, Xiong C Z, Zhang X, Wang X H, Chang S J 2019 Photonics Res. 7 000325Google Scholar

    [21]

    波扎 著 (张肇仪 译) 2015 微波工程 (第3版) (北京: 电子工业出版社) 第380−386页

    Pozar D M (translated by Zhang Z Y)2015 Microwave Engineering (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp380−386 (in Chinese)

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件. 物理学报, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [3] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [4] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [5] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性. 物理学报, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [6] 孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平. 超紧凑硅基混合表面等离激元光场窄化器件的实验研究. 物理学报, 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [7] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究. 物理学报, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [8] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [9] 束方洲, 范仁浩, 王嘉楠, 彭茹雯, 王牧. 等离激元材料和器件的动态调控研究进展. 物理学报, 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [10] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [11] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [13] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [15] 王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆. 非互易旋电材料硅基矩形波导的色散特性研究. 物理学报, 2019, 68(15): 154203. doi: 10.7498/aps.68.20190109
    [16] 蔡伟, 邢俊晖, 杨志勇. 磁光材料Verdet常数贡献性的讨论. 物理学报, 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [17] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [18] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [19] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [20] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
计量
  • 文章访问数:  7969
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2019-12-25
  • 刊出日期:  2020-04-05

/

返回文章
返回