搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝状椭圆孔洞吸收器圆二色性研究

余鹏 王保清 吴小虎 王文昊 徐红星 王志明

引用本文:
Citation:

蜂窝状椭圆孔洞吸收器圆二色性研究

余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明

Circular dichroism of honeycomb-shaped elliptical hole absorber

Yu Peng, Wang Bao-Qing, Wu Xiao-Hu, Wang Wen-Hao, Xu Hong-Xing, Wang Zhi-Ming
PDF
HTML
导出引用
  • 手性结构的圆二色吸收已经被广泛应用于分析化学、工业制药、生物监测等领域. 然而天然手性结构与光的相互作用很弱. 等离激元光学纳米结构能大幅度增强光-物作用的能力. 在制备可见-近红外手性等离激元超吸收结构的过程中, 通常存在吸收率与样品制备面积的折中, 即可大面积制备结构的圆二色性较小. 为提高可大面积制备手性等离激元吸收器的圆二色性, 本文设计了蜂窝状排列的椭圆孔洞吸收器, 并研究了其吸收、圆二色性和光学g因子. 通过合理的设计, 数值计算结果显示, 在手性光的激发下其圆二色值可达约0.8, 对应光学g因子可达约1.7. 巨大的圆二色性来源于倾斜椭圆结构对结构对称性的破坏, 且倾斜角对圆二色性的影响很大. 本结构可利用纳米球光刻法制备, 对制备大规模手性等离激元吸收器具有一定的指导意义.
    The circular dichroism of chiral structure has been widely used in analytical chemistry, industrial pharmacy, biological monitoring, etc. However, the light-matter interaction between natural chiral structures is extremely weak. Plasmonic nanostructures can significantly enhance light-matter interaction. During the fabrication of the visible-to-near-infrared chiral plasmonic metamaterial absorbers, there exists usually a trade-off between the absorption and the sample area, that is, the circular dichroism signal of the large-area structure is small. Besides, the preparation of chiral absorbers working in the visible and near-infrared region usually requires expensive etching or lithography equipment, such as reactive ion etching or electron beam lithography. Therefore, preparing cost-effective chiral absorbers with large circular dichroism is attractive for practical applications. In order to improve the circular dichroism of large-scale chiral absorbers, a honeycomb-shaped elliptical hole absorber is proposed in this paper, and its absorption, circular dichroism, and optical g-factor are studied. By reasonable design, the numerical calculation results show that the circular dichroism can reach about 0.8 under the excitation of chiral polarized light, and the corresponding optical g-factor can reach about 1.7 at 920 nm. Compared with the reported absorber, our chiral absorber has a maximum g-factor value. The giant circular dichroism originates from the symmetry breaking of the structure by tilting ellipse structures, and the tilt angle has a significant influence on circular dichroism. To further explain the absorption difference, the electric profile, surface current distribution, and absorption loss of the chiral absorption at resonant wavelength are analyzed. Finally, we point out that the structure can be prepared by existing technologies, such as nanosphere photolithography: first, a layer of polystyrene (PS) balls is formed by self-organization, which can control the period of the structure; then the size of the PS balls is reduced to a suitable size and spacing by the reactive ion etching; finally, a metallic layer is deposited by oblique angle evaporation. This work provides useful guidance for fabricating the large-scale chiral plasmonic absorbers.
      通信作者: 余鹏, peng.yu@uestc.edu.cn ; 王志明, zhmwang@uestc.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2019YFB2203400)、中国博士后科学基金(批准号: 2019M663467)和四川省科学技术厅自由探索项目(批准号: 20YYJC3609)资助的课题
      Corresponding author: Yu Peng, peng.yu@uestc.edu.cn ; Wang Zhi-Ming, zhmwang@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203400), the China Postdoctoral Science Foundation (Grant No. 2019M663467), and the Free Exploration Project of Science and Technology Department of Sichuan Province, China (Grant No. 20YYJC3609)
    [1]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389

    [2]

    Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5

    [3]

    Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3

    [4]

    Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16

    [5]

    Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106

    [6]

    Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar

    [7]

    Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3

    [8]

    Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2

    [9]

    Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar

    [10]

    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49

    [11]

    Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29

    [12]

    He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar

    [13]

    Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9

    [14]

    Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7

    [15]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar

    [16]

    Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar

    [17]

    陈珊珊, 刘幸, 刘之光, 李家方 2019 物理学报 68 248101Google Scholar

    Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar

    [18]

    Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar

    [19]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar

    [20]

    Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [22]

    Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar

    [23]

    Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24

    [24]

    Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8

    [25]

    Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14

  • 图 1  手性等离激元吸收器的结构示意图 (a) 三维立体结构图; (b) x-y平面图; (c) x-z平面图

    Fig. 1.  Schematic of the proposed chiral plasmonic absorber: (a) Three dimensional schematic of the absorber; (b) schematic of the absorber in x-y plane; (c) schematic of the absorber in x-z plane.

    图 2  椭圆孔洞长轴a变化时的吸收谱, CD谱和g-factor (a), (b) 吸收谱; (c) CD谱; (d) g-factor

    Fig. 2.  Simulated absorption spectra, CD spectra and g-factor with the long axis of the ellipse a changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor

    图 3  椭圆孔洞短轴b变化时的吸收谱、CD谱和g-factor (a), (b) 吸收谱; (c) CD谱; (d) g-factor

    Fig. 3.  Simulated absorption spectra, CD spectra and g-factor with the short axis of the ellipse b changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 4  椭圆倾斜角θ变化时的 (a) (b) 吸收谱, (c) CD谱, (d) g-factor

    Fig. 4.  Simulated absorption spectra, CD spectra and g-factor with the angle of the ellipse θ changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 5  顶层结构厚度h1变化时的 (a), (b) 吸收谱, (c) CD谱, (d) g-factor

    Fig. 5.  Simulated absorption spectra, CD spectra and g-factor with the thickness of the top layer h1 changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 6  电介质SiO2层厚度h2变化时的 (a), (b) 吸收谱, (c) CD谱, (d) g-factor

    Fig. 6.  Simulated absorption spectra, CD spectra, and g-factor with the thickness of the SiO2 layer h2 changes: (a), (b) Absorption spectra; (c) CD spectra; (d) g-factor.

    图 7  不同偏振的入射光照射下, 共振波长在920 nm附近的 (a)和 (b) 归一化电场E/E0分布图, 未归一化前, LCP和RCP光照射下E/E0最大值分别为11和36; (c) 和 (d) 表面电流分布图; (e) 和 (f) 吸收损耗(吸收密度)图. 图(a), (c)和 (e) 为LCP入射; 图(b), (d) 和 (f) 为RCP入射

    Fig. 7.  (a), (b) Normalized electric field E/E0; (c), (d) Surface current distribution; (e), (f) Absorption loss (absorption density) at the wavelength of 920 nm with different circularly polarized illuminations. (a), (c) and (e) For LCP; (b), (d) and (f) for RCP; the non-normalized maximum values of E/E0 under LCP and RCP light irradiation are 11 and 36, respectively.

    图 8  LCP和RCP光入射结构时反射波中两种圆偏振光的分量

    Fig. 8.  The components of LCP and RCP light in the reflected wave.

    表 1  可见和近红外波段的手性超材料吸收器与本文吸收器的对比

    Table 1.  Selected publications on chiral metamaterial absorbers at the visible and near-infrared region.

    手性结构工作波长 /nmCDmax (ABS)g-factormax理论(T)或者实验(E)文献
    锯齿形8300.821.46T[9]
    L-形8150.120.48T[7]
    ŋ-形7910.450.90T&E[22]
    Z-形13400.851.56T&E[6]
    双矩形16000.71.34T&E[23]
    Y-形15500.751.26T[24]
    蜂窝孔洞9360.791.70T本文
    下载: 导出CSV
  • [1]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389

    [2]

    Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5

    [3]

    Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3

    [4]

    Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16

    [5]

    Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106

    [6]

    Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar

    [7]

    Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3

    [8]

    Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2

    [9]

    Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar

    [10]

    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49

    [11]

    Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29

    [12]

    He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar

    [13]

    Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9

    [14]

    Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7

    [15]

    Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar

    [16]

    Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar

    [17]

    陈珊珊, 刘幸, 刘之光, 李家方 2019 物理学报 68 248101Google Scholar

    Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar

    [18]

    Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar

    [19]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar

    [20]

    Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [22]

    Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar

    [23]

    Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24

    [24]

    Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8

    [25]

    Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [4] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [5] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [6] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [7] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [8] 吐达洪·阿巴, 屈瑜, 白俊冉, 张中月. 平面复合金属微纳结构的圆二色性研究. 物理学报, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [9] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [10] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [11] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [12] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [13] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [14]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [15] 王卫东, 李龙龙, 杨晨光, 李明林. 单层二硫化钼纳米带弛豫性能的分子动力学研究. 物理学报, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [16] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [17] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [18] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [20] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
计量
  • 文章访问数:  8301
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 修回日期:  2020-06-30
  • 上网日期:  2020-10-14
  • 刊出日期:  2020-10-20

/

返回文章
返回