-
本文提出了一种双频带太赫兹超材料吸波器, 该超材料吸波器在0.387和0.694 THz两个谐振点的吸收率可达到99%以上, 实现了对入射太赫兹波的“完美吸收”. 该双频带太赫兹超材料吸波体传感器在两个谐振频率处的Q值分别为28.1和29.3, 折射率灵敏度
$S(f)$ 分别为39.5和85 GHz/RIU, 均具有较优的传感特性. 研究结果表明, 对于该太赫兹超材料吸波器来说, 除了可以选用折射率较小的中间介质层材料提高传感特性外, 还可以根据待测物折射率的不同选取相应的待测物厚度来提高传感特性. 本文设计的双频带超材料吸波体传感器可实现谐振频率与待测物质特征频率间的多点匹配, 增加反映被测物质差异的信息量, 从而提升物质探测的准确性和灵敏度. 通过对三种食用油样本的分析, 验证了本文所设计的双频带太赫兹超材料吸波体传感器的实际应用价值. 本次研究丰富了双频带超材料吸波体传感器的种类, 在传感检测领域具有广阔的发展空间.The terahertz metamaterial absorber sensor is an important functional device of the metamaterials. It can realize not only the perfect absorption in the incident terahertz wave, but also the detect sample by monitoring the deviation of the absorption frequency of the metamaterial absorber sensor. Dual-band metamaterial absorber sensor has double frequency resonance peak. By matching the characteristic frequency between the sensor and the substance to be measured, the information reflecting the difference of the substance to be measured is increased, to improve the accuracy and sensitivity of material detection. Compared with the traditional metamaterial absorber sensor, the dual-band metamaterial absorber sensor can realize very accurate sensing and detection function through multi-point matching of information. In this paper, a double band terahertz band metamaterial absorber sensor is proposed. The absorption rate of the metamaterial absorber sensor reaches over 99% at 0.387 THz and 0.694 THz frequency point, achieving “perfect absorption”. Through the analysis of a series of materials with different refractive indices to be measured, the suitable sensing range of the designed terahertz metamaterial absorber sensor is obtained. By analyzing the different thickness of the substance to be measured and the different medium layer materials, the thickness of the substance to be measured and the medium layer materials which can improve the sensing performance of the sensor are obtained. In this paper, the sensing identification of edible oil is taken for example to verify that the dual-band terahertz metamaterial absorber sensor designed in this paper can realize high sensitivity and rapid detection, and has a broad development prospect in the field of sensing and detection. -
Keywords:
- terahertz /
- dual-band Frequency /
- metamaterial absorber /
- sensor
[1] 李允植 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页
Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)
[2] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar
[3] Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar
[4] 张玉萍, 李彤彤, 吕欢欢 2015 物理学报 64 117801Google Scholar
Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar
[5] 闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 09 2365Google Scholar
Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 09 2365Google Scholar
[6] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338Google Scholar
Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338Google Scholar
[7] 王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302Google Scholar
Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar
[8] Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar
[9] Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61Google Scholar
[10] Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar
[11] Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar
[12] Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar
[13] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar
[14] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar
[15] Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar
[16] Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar
[17] Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar
[18] Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar
[19] Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar
[20] Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101Google Scholar
[21] Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303Google Scholar
[22] He X Y, Liu F, Lin F T, and Shi W Z 2021 Opt. Lett. 46 472Google Scholar
[23] He X Y, Lin F T, Liu F, Shi W Z 2020 J. Phys. D: Appl. Phys. 53 155105Google Scholar
[24] Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H, Shi W Z 2020 Phys. E 124 114309Google Scholar
[25] Hu T, Chieffo Logan R, Brenckle Mark A 2011 Adv. Mater. 23 3197Google Scholar
[26] Whitesides G M 2006 Nature 442 368Google Scholar
[27] Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar
[28] Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar
[29] Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar
[30] Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. Lett. 117 014504Google Scholar
-
图 9 (a) 待测分析物折射率从
$n$ = 1变化到$n$ = 2时谐振频率${f_1}$ 偏移量及其线性拟合; (b) 待测分析物折射率从$n$ = 1变化到$n$ = 2时谐振频率${f_2}$ 偏移量及其线性拟合Fig. 9. (a) Resonance frequency shifts of
${f_1}$ resonance frequency with refractive index changes from$n$ = 1 to$n$ = 2 and linear fitting; (b) resonance frequency shifts of${f_2}$ resonance frequency with refractive index changes from$n$ = 1 to$n$ = 2 and linear fitting.图 11 (a) 不同中间介质层材料对传感器谐振频率
${f_1}$ 处偏移量的影响及其线性拟合; (b) 不同中间介质层材料对传感器谐振频率${f_2}$ 处偏移量的影响及其线性拟合Fig. 11. (a) Influence of different dielectric layer materials on the resonance frequency
${f_1}$ shift of sensor and linear fitting; (b) influence of different dielectric layer materials on the resonance frequency${f_2}$ shift of sensor and linear fitting. -
[1] 李允植 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页
Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)
[2] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar
[3] Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar
[4] 张玉萍, 李彤彤, 吕欢欢 2015 物理学报 64 117801Google Scholar
Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar
[5] 闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 09 2365Google Scholar
Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 09 2365Google Scholar
[6] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338Google Scholar
Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338Google Scholar
[7] 王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302Google Scholar
Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar
[8] Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar
[9] Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61Google Scholar
[10] Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar
[11] Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar
[12] Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar
[13] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar
[14] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar
[15] Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar
[16] Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar
[17] Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar
[18] Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar
[19] Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar
[20] Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101Google Scholar
[21] Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303Google Scholar
[22] He X Y, Liu F, Lin F T, and Shi W Z 2021 Opt. Lett. 46 472Google Scholar
[23] He X Y, Lin F T, Liu F, Shi W Z 2020 J. Phys. D: Appl. Phys. 53 155105Google Scholar
[24] Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H, Shi W Z 2020 Phys. E 124 114309Google Scholar
[25] Hu T, Chieffo Logan R, Brenckle Mark A 2011 Adv. Mater. 23 3197Google Scholar
[26] Whitesides G M 2006 Nature 442 368Google Scholar
[27] Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar
[28] Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar
[29] Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar
[30] Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. Lett. 117 014504Google Scholar
计量
- 文章访问数: 6509
- PDF下载量: 296
- 被引次数: 0