搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维声子晶体中Zak相位诱导的界面态

高慧芬 周小芳 黄学勤

引用本文:
Citation:

二维声子晶体中Zak相位诱导的界面态

高慧芬, 周小芳, 黄学勤

Zak phase induced interface states in two-dimensional phononic crystals

Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin
PDF
HTML
导出引用
  • 界面态具有巨大的实际应用价值, 因此寻找界面态是一个既有科学意义也有应用前景的课题. 在本文中, 我们通过把二维正方晶格声子晶体的结构单元进行倾斜, 构造出具有线性狄拉克色散的斜方晶格体系. 狄拉克色散引起体能带Zak相位的π跃变, 使得位于狄拉克锥投影能带两边的带隙具有不同符号的表面阻抗, 从而导致由正方晶体体系与由其“倾斜”的斜方晶格体系构成的界面处存在确定性的界面态.
    Interface states have great practical applications, therefore, searching for the existence of interface states has both scientific significance and application prospects. In this work, we tilt the structure unite of two-dimensional phononic crystal with a square lattice to construct an oblique lattice possessing linear Dirac dispersion. The Dirac dispersion gives rise to a π jump of the Zak phases of the bulk bands, so that the projected band gaps at both sides of the Dirac cone have opposite signs of surface impedance, resulting in deterministic interface states at the interface formed by the phononic crystal with a square lattice and its tilted oblique lattice system.
      通信作者: 高慧芬, huifen_gao@163.com
    • 基金项目: 长治学院国家自然科学基金资金项目院级子项目(批准号: GZRZ2020002)、山西省高等学校科技创新项目(批准号: 2019L905)和山西省教育科学规划(批准号: HLW-20121)资助的课题
      Corresponding author: Gao Hui-Fen, huifen_gao@163.com
    • Funds: Project supported by the College-level Sub-projects of Changzhi University of National Natural Science Foundation of China(Grant No. GZRZ2020002), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. 2019L905), and Education Science Planning Project of Shanxi Province, China (Grant No. HLW-20121)
    [1]

    Wu F, Liu Z, Liu Y 2002 Phys. Rev. E 66 046628Google Scholar

    [2]

    Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, Sheng P 2005 Phys. Rev. B 72 064306

    [3]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [4]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [5]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [6]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Sigalas M, Economou E 1992 J. Sound Vib. 158 377Google Scholar

    [9]

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [10]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [11]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [12]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [15]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [16]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [17]

    Xie B, Liu H, Cheng H, Liu Z, Tian J, Chen S 2020 Light Sci. Appl. 9 201Google Scholar

    [18]

    Xiao M, Chen W, He W, Chen C T 2015 Nat. Phys. 11 920Google Scholar

    [19]

    Li F, Huang X, Lu J, Ma J, Liu Z 2018 Nat. Phys. 14 30Google Scholar

    [20]

    Deng W, Lu J, Li F, Huang X, Yan M, Ma J, Liu Z 2019 Nat. Commun. 10 1769Google Scholar

    [21]

    Lu J, Huang X, Yan M, Li F, Deng W, Liu Z 2020 Phys. Rev. Appl. 13 054080Google Scholar

    [22]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419Google Scholar

    [23]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [24]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423Google Scholar

    [25]

    Huang X, Yang Y, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [26]

    Yang Y, Xu T, Xu Y F, Hang Z H 2017 Opt. Lett. 42 3085Google Scholar

    [27]

    Guinea F, Katsnelson M I, Geim A K 2009 Nat. Phys. 6 30

    [28]

    Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F, Liu Z 2019 Nat. Phys. 15 352Google Scholar

    [29]

    Chong Y D, Wen X G, Soljacic M 2008 Phys. Rev. B 77 235125Google Scholar

    [30]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

  • 图 1  (a) 二维正方晶格声子晶体的能带结构, 插图是原胞示意图; (b) M点附近的三维能带结构, 对应于图(a)中的虚线区域. 橡胶与水的质量密度和声速分别为: $ \rho =1.3\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ v=500\;\mathrm{m}/\mathrm{s} $; $ {\rho }_{0}=1.0\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ {v}_{0}=1500\;\mathrm{m}/\mathrm{s} $

    Fig. 1.  (a) Bulk band structure of a two-dimensional phononic crystal with a square lattice, consisting of a rubber cylinder in water. Inset: the unit cell. (b) 3 D bulk band structure around the M point, corresponding to the dashed region in (a). Here, the lattice constant and the radius of the cylinder are $ a=1\;\mathrm{m} $, and $ R=0.15 a $, respectively. The mass densities and sound velocity of the rubber and water are: $ \rho =1.3\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ v=500\;\mathrm{m}/\mathrm{s} $; and $ {\rho }_{0}=1.0\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ {v}_{0}=1500\;\mathrm{m}/\mathrm{s} $, respectively.

    图 2  (a) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格体系的能带结构, 左插图是二维斜方晶格声子晶体的原胞, 右插图表示虚线区域的放大能带结构; (b)斜方晶格的第一布里渊区; (c) 线性狄拉克点附近的三维能带结构, 对应图(a)中的虚线区域

    Fig. 2.  (a) Bulk band structure of an oblique lattice with the tilted angle $ \alpha ={70}^ {\circ} $, Inset: the unit cell (left); the enlarged band structure around the Dirac point near ${ {K}}_{1}$ point (right); (b) first Brillouin zone of the oblique lattice; (c) 3D bulk band structure around the Dirac point, corresponding to the dashed region in (a).

    图 3  (a) 正方晶格声子晶体沿x方向的投影能带; (b) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格声子晶体沿x方向的投影能带$, \mathrm{I}\mathrm{m}\left(Z\right) $表示表面阻抗的虚部; (c) 由上述两个声子晶体构成的沿x方向界面的界面态色散关系, 粉色线表示界面态色散; (d)正方晶格和斜方晶格声子晶体构成的沿x方向的界面(左图), 频率为$ 937.4\;\mathrm{H}\mathrm{z} $的界面态本征声压场分布(右图)

    Fig. 3.  (a)Projected band structures along the $ {k}_{x} $ direction of the phononic crystals with a square lattice; (b) projected band structures along the $ {k}_{x} $ direction of phononic crystals with an oblique lattice of $ \alpha ={70}^ {\circ} $, Im(Z) represents the imaginary part of surface impedance; (c)interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by two phononic crystals with the square and oblique lattices, the pink lines denote the interface states; (d) the interface constructed by two phononic crystals with the square and oblique lattices(left), the eigen pressure field distribution of the interface state at $ 937.4\;\mathrm{H}\mathrm{z}\left(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\right) $.

    图 4  倾斜角$ {\rm{\alpha }}={70}^ {\circ} $的斜方晶格声子晶体在$ {k}_{x}=0.6\;{\text{π}}/a $ (a) 和$ {k}_{x}=0.85\;{\text{π}}/a $(b)时沿$ {k}_{y} $方向的体能带; (c) 在$ {k}_{x}=0.85\;{\text{π}}/a $时, 正方晶格声子晶体沿$ {k}_{y} $方向的体能带, 其中红色区域和蓝色区域分别表示$ \mathrm{I}\mathrm{m}\left(Z\right) < 0 $$ \mathrm{I}\mathrm{m}\left(Z\right) > 0 $

    Fig. 4.  Bulk band structures along the $ {k}_{y} $ direction of the phononic crystal with an oblique lattice with $ {\rm{\alpha }}={70}^ {\circ} $ for $ {k}_{x}=0.6\;{\text{π}}/a $(a) and $ {k}_{x}=0.85\;{\text{π}}/a $ (b); (c) bulk band structures along the $ {k}_{x} $ direction of the phononic crystal with a square lattice for $ {k}_{x}=0.85\;{\text{π}}/a $. The red and blue regions represent $ \mathrm{I}\mathrm{m}\left(Z\right) < 0 $ and $ \mathrm{I}\mathrm{m}\left(Z\right) > 0 $, respectively.

    图 5  $ \alpha ={50}^ {\circ} $斜方晶格与正方晶格声子晶体构成的沿x方向界面的界面态色散, 红色线和绿色线分别表示两个共同带隙中的界面态色散

    Fig. 5.  Interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by two phononic crystals with the square and oblique lattices with $ \alpha ={50}^ {\circ} $, the red line and the green line represent the interface state dispersion in the two common band gaps, respectively.

    图 6  铁柱子在环氧树脂中周期性排列构成二维声子晶体 (a) 二维正方晶格声子晶体的能带结构; (b) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格体系的能带结构; (c)由上述两个声子晶体构成的沿x方向界面的界面态色散关系(左), 粉色线表示界面态色散, 频率为$ 529.6\;\mathrm{H}\mathrm{z} $的界面态本征位移场分布(右)

    Fig. 6.  Two-dimensional phononic crystals are constructed by steel cylinders in epoxy: (a) Bulk band structure of a square lattice; (b) bulk band structure of an oblique lattice with the tilted angle $ \alpha ={70}^ {\circ} $; (c) the interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by these two phononic crystals(Left), the pink line denotes the interface states, the eigen displacement field distribution of the interface state at $ 529.6\;\mathrm{H}\mathrm{z}\left(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\right) $.

  • [1]

    Wu F, Liu Z, Liu Y 2002 Phys. Rev. E 66 046628Google Scholar

    [2]

    Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, Sheng P 2005 Phys. Rev. B 72 064306

    [3]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [4]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [5]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [6]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Sigalas M, Economou E 1992 J. Sound Vib. 158 377Google Scholar

    [9]

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [10]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [11]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [12]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [15]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [16]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [17]

    Xie B, Liu H, Cheng H, Liu Z, Tian J, Chen S 2020 Light Sci. Appl. 9 201Google Scholar

    [18]

    Xiao M, Chen W, He W, Chen C T 2015 Nat. Phys. 11 920Google Scholar

    [19]

    Li F, Huang X, Lu J, Ma J, Liu Z 2018 Nat. Phys. 14 30Google Scholar

    [20]

    Deng W, Lu J, Li F, Huang X, Yan M, Ma J, Liu Z 2019 Nat. Commun. 10 1769Google Scholar

    [21]

    Lu J, Huang X, Yan M, Li F, Deng W, Liu Z 2020 Phys. Rev. Appl. 13 054080Google Scholar

    [22]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419Google Scholar

    [23]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [24]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423Google Scholar

    [25]

    Huang X, Yang Y, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [26]

    Yang Y, Xu T, Xu Y F, Hang Z H 2017 Opt. Lett. 42 3085Google Scholar

    [27]

    Guinea F, Katsnelson M I, Geim A K 2009 Nat. Phys. 6 30

    [28]

    Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F, Liu Z 2019 Nat. Phys. 15 352Google Scholar

    [29]

    Chong Y D, Wen X G, Soljacic M 2008 Phys. Rev. B 77 235125Google Scholar

    [30]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

  • [1] 蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科. 声学四极子拓扑绝缘体中的位错态. 物理学报, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体. 物理学报, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [3] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [4] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [5] 代美芹, 张清悦, 赵秋玲, 王茂榕, 王霞. 一维反转对称光子结构中界面态的可调控特性. 物理学报, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [6] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [7] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [8] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [9] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [10] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [11] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [12] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [13] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [14] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [15] 赵启凤, 庄奕琪, 包军林, 胡为. 基于1/f噪声的NPN晶体管辐照感生电荷的定量分离. 物理学报, 2015, 64(13): 136104. doi: 10.7498/aps.64.136104
    [16] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [17] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [18] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  4778
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 修回日期:  2021-10-21
  • 上网日期:  2022-02-14
  • 刊出日期:  2022-02-20

/

返回文章
返回