-
基于裂纹模板法制备了一种高屏蔽性能的金属网格透明导电薄膜. 采用现有裂纹模板法制备得到的金属网格透明导电薄膜, 其金属网格厚度较薄, 屏蔽性能有待改进. 本文在研究了裂纹材料的旋涂转速对龟裂图案的影响关系分布曲线中, 增加了缝隙深度因子, 选取了合适的裂纹材料和旋涂方案, 制备得到理想的随机图案分布的裂纹模板. 通过磁控溅射法在裂纹模板缝隙内外沉积厚度为1 μm的金属层, 引入了超声波清洗结合有机溶剂的方法, 高效去除裂纹胶模板后, 得到了金属网格透明导电薄膜样品. 实测的金属网格透明导电薄膜样品透光率超过85%, 同时方阻值保持在2.8 Ω/□左右, 具有良好的透光和电磁屏蔽性能. 通过制备加厚金属网格透明导电薄膜改进了屏蔽性能, 为后续基于裂纹模板法制备高屏蔽性能金属网格透明导电薄膜提供了参考.A metal mesh transparent conductive film with high shielding performance is prepared based on the crack template method. The shielding performance of the metal mesh transparent conductive film prepared by the existing crack template method needs improving due to the thin thickness of the metal mesh. In this work, the crack depth factor is added to the distribution curve of the relationship between the spin coating speed of the cracked material and the crack pattern, and the appropriate crack material and spin coating scheme are selected to prepare an ideal crack template with random pattern distribution. A metal layer with a thickness of 1 μm is deposited inside and outside the crack template gap by magnetron sputtering, and the method of ultrasonic cleaning combined with organic solvent is introduced to efficiently remove the crack glue template, and a metal mesh transparent conductive film sample is obtained. The measured light transmittance of the metal mesh transparent conductive film sample exceeds 85% while the square resistance value remains around 2.8 Ω/□, which has good light transmittance and electromagnetic shielding performance. The shielding performance is improved by preparing thickened metal mesh transparent conductive films, which provide a reference for the subsequent preparation of metal mesh transparent conductive films with high shielding performance based on the crack template method.
-
Keywords:
- crack template method /
- metal grid /
- high shielding /
- magnetron sputtering
[1] Rao K D M, Gupta R, Kulkarni G U 2014 Adv. Mater. Inter. 1 1400090Google Scholar
[2] Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar
[3] Seo K W, Noh Y J, Na S I, Kim H K 2016 Sol. Energy Mater Sol. Cells 155 51Google Scholar
[4] Jang J, Im H G, Jin J, Lee J, Lee J Y, Bae B S 2016 ACS Appl. Mater. Inter. 8 27035Google Scholar
[5] Li L J, Zhang B, Zou B H, Xie R J, Zhang T, Li S, Zheng B, Wu J S, Weng J N, Zhang W N, Huang W, Huo F W 2017 ACS Appl. Mater. Inter. 9 39110Google Scholar
[6] Kim W K, Lee S, Lee H D, Hee Park I, Seong Bae J, Woo Lee T, Kim J Y, Hun Park J, Chan Cho Y, Ryong Cho C, Jeong S Y 2015 Sci. Rep. 5 10715Google Scholar
[7] Han B, Pei K, Huang Y L, Zhang X J, Rong Q K, Lin Q G, Guo Y F, Sun T Y, Guo C F, Carnahan D, Giersig M, Wang Y, Gao J W, Ren Z F, Kempa K 2014 Adv. Mater. 26 873Google Scholar
[8] Gao J W, Xian Z K, Zhou G F, Liu J M, Kempa K 2017 Adv. Funct. Mater. 28 1705023Google Scholar
[9] Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar
[10] Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar
[11] Xian Z K, Han B, Li S R, Yang C B, Wu S J, Lu X B, Gao X S, Zeng M, Wang Q M, Bai P F, Naughton M J, Zhou G F, Liu J M, Kempa K, Gao J W 2017 Adv. Mater. Technol. 2 1700061Google Scholar
[12] Li P, Zhao Y, Ma J G, Yang Y, Xu H Y, Liu Y C 2020 Adv. Mater. Technol. 5 2070008Google Scholar
[13] Lee D, Go S, Hwang G, Chin B D, Lee D H 2013 Langmuir 29 12259Google Scholar
[14] Kiruthika S, Gupta R, Kulkarni G U 2014 RSC Adv. 4 49745Google Scholar
[15] Gupta N, Rao K D M, Gupta R, Krebs F C, Kulkarni G U 2017 ACS Appl. Mater. Inter. 9 8634Google Scholar
[16] Yang C, Merlo J M, Kong J, Xian Z K, Han B, Zhou G F, Gao J W, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar
[17] Han B, Peng Q, Li R P, Rong Q K, Ding Y, Akinoglu E M, Wu, X Y, Wang X, Lu X B, Wang Q, Zhou G F, Liu J M, Ren Z F, Giersig M, Herczynski A, Kempa K, Gao J W 2016 Nat. Commun. 7 12825Google Scholar
[18] Qiang Y X, Zhu C H, Wu Y P, Cui S, Liu Y 2018 RSC Adv. 8 23066Google Scholar
[19] Dong G P, Liu S, Pan M Q, Zhou G F, Liu J M, Kempa K, Gao J W 2019 Adv. Mater. Technol. 4 1900056Google Scholar
[20] Peng Q, Li S R, Han B, Rong Q K, Lu X B, Wang Q M, Zeng M, Zhou G F, Liu J M, Kempa K, Gao J W 2016 Adv. Mater. Technol. 1 1600095Google Scholar
[21] Guo C F, Sun T Y, Liu Q H, Suo Z G, Ren Z F 2014 Nat. Commun. 5 3121Google Scholar
[22] Kiruthika S, Rao K D M, Kumar A, Gupta R, Kulkarni G U 2014 Mater. Res. Express 1 26301Google Scholar
[23] Voronin A S, Fadeev Y V, Dobrosmyslov S S, Simunin M M, Khartov S V 2020 J. Phys. Conf. Ser. 1679 042087Google Scholar
-
图 6 金属网格透明导电薄膜制备过程中电子显微镜观测结果图 (a) 10 μm观测尺度下裂纹图案; (b) 10 μm观测尺度下金属沉积图案; (c) 10 μm观测尺度下金属网格图案; (d) 50 μm观测尺度下金属网格图案
Fig. 6. Electron microscope observation results during the preparation of metal mesh transparent conductive films: (a) Crack pattern at 10 μm observation scale; (b) metal deposition patterns at 10 μm observation scale; (c) metal mesh pattern at 10 μm observation scale; (d) metal mesh pattern at 50 μm observation scale.
表 1 文献工作性能比较
Table 1. Performance comparison among this work and other literatures.
-
[1] Rao K D M, Gupta R, Kulkarni G U 2014 Adv. Mater. Inter. 1 1400090Google Scholar
[2] Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar
[3] Seo K W, Noh Y J, Na S I, Kim H K 2016 Sol. Energy Mater Sol. Cells 155 51Google Scholar
[4] Jang J, Im H G, Jin J, Lee J, Lee J Y, Bae B S 2016 ACS Appl. Mater. Inter. 8 27035Google Scholar
[5] Li L J, Zhang B, Zou B H, Xie R J, Zhang T, Li S, Zheng B, Wu J S, Weng J N, Zhang W N, Huang W, Huo F W 2017 ACS Appl. Mater. Inter. 9 39110Google Scholar
[6] Kim W K, Lee S, Lee H D, Hee Park I, Seong Bae J, Woo Lee T, Kim J Y, Hun Park J, Chan Cho Y, Ryong Cho C, Jeong S Y 2015 Sci. Rep. 5 10715Google Scholar
[7] Han B, Pei K, Huang Y L, Zhang X J, Rong Q K, Lin Q G, Guo Y F, Sun T Y, Guo C F, Carnahan D, Giersig M, Wang Y, Gao J W, Ren Z F, Kempa K 2014 Adv. Mater. 26 873Google Scholar
[8] Gao J W, Xian Z K, Zhou G F, Liu J M, Kempa K 2017 Adv. Funct. Mater. 28 1705023Google Scholar
[9] Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar
[10] Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar
[11] Xian Z K, Han B, Li S R, Yang C B, Wu S J, Lu X B, Gao X S, Zeng M, Wang Q M, Bai P F, Naughton M J, Zhou G F, Liu J M, Kempa K, Gao J W 2017 Adv. Mater. Technol. 2 1700061Google Scholar
[12] Li P, Zhao Y, Ma J G, Yang Y, Xu H Y, Liu Y C 2020 Adv. Mater. Technol. 5 2070008Google Scholar
[13] Lee D, Go S, Hwang G, Chin B D, Lee D H 2013 Langmuir 29 12259Google Scholar
[14] Kiruthika S, Gupta R, Kulkarni G U 2014 RSC Adv. 4 49745Google Scholar
[15] Gupta N, Rao K D M, Gupta R, Krebs F C, Kulkarni G U 2017 ACS Appl. Mater. Inter. 9 8634Google Scholar
[16] Yang C, Merlo J M, Kong J, Xian Z K, Han B, Zhou G F, Gao J W, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar
[17] Han B, Peng Q, Li R P, Rong Q K, Ding Y, Akinoglu E M, Wu, X Y, Wang X, Lu X B, Wang Q, Zhou G F, Liu J M, Ren Z F, Giersig M, Herczynski A, Kempa K, Gao J W 2016 Nat. Commun. 7 12825Google Scholar
[18] Qiang Y X, Zhu C H, Wu Y P, Cui S, Liu Y 2018 RSC Adv. 8 23066Google Scholar
[19] Dong G P, Liu S, Pan M Q, Zhou G F, Liu J M, Kempa K, Gao J W 2019 Adv. Mater. Technol. 4 1900056Google Scholar
[20] Peng Q, Li S R, Han B, Rong Q K, Lu X B, Wang Q M, Zeng M, Zhou G F, Liu J M, Kempa K, Gao J W 2016 Adv. Mater. Technol. 1 1600095Google Scholar
[21] Guo C F, Sun T Y, Liu Q H, Suo Z G, Ren Z F 2014 Nat. Commun. 5 3121Google Scholar
[22] Kiruthika S, Rao K D M, Kumar A, Gupta R, Kulkarni G U 2014 Mater. Res. Express 1 26301Google Scholar
[23] Voronin A S, Fadeev Y V, Dobrosmyslov S S, Simunin M M, Khartov S V 2020 J. Phys. Conf. Ser. 1679 042087Google Scholar
计量
- 文章访问数: 5919
- PDF下载量: 132
- 被引次数: 0