-
基于柔性热电薄膜制冷的面内散热技术有望为电子器件高效面内散热提供解决方案, 但柔性热电薄膜电输运性能太低和面内散热器件结构设计困难严重制约了该技术在电子元器件散热中的应用. 本文通过在环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜中掺入具有同时调控电热输运行为功能的石墨烯, 发现不仅有助于Bi0.5Sb1.5Te3晶粒沿(000l)择优取向, 而且还提供了载流子快速传输通道, 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜的载流子浓度和迁移率同时显著增大; 石墨烯掺入量为1.0%的柔性热电薄膜室温最高功率因子达到1.56 mW/(K2·m), 与环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜相比提高了71%, 其最大制冷温差提高了1倍. 利用这种高性能石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜制冷, 设计并制备出了级联结构高效面内散热器件, 发现该器件可以将热量从热源区逐级传输至散热区, 实现热源区温度下降1.4—1.9 ℃, 展现出了高效稳定的面内散热能力.
-
关键词:
- 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜 /
- 电输运性能 /
- 载流子快速传输通道 /
- 面内散热器件
In-plane heat dissipation technology based on flexible thermoelectric film cooling is expected to provide a solution to efficient in-plane heat dissipation of electronic devices. However, the low electrical transport performance of flexible thermoelectric films and the difficulty in designing the structure of in-plane heat dissipation device seriously restrict the applications of this technology in heat dissipation of electronic devices. In this work, an epoxy/Bi0.5Sb1.5Te3 flexible thermoelectric film is incorporated with graphene which can simultaneously regulate the electrical and thermal transport behaviors. It is found that the incorporating of graphene not only contributes to the preferential orientation of Bi0.5Sb1.5Te3 grains along (000l), but also provides a fast carrier transport channel. The carrier concentration and mobility of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric film are simultaneously increased. Comparing with the epoxy/Bi0.5Sb1.5Te3 flexible thermoelectric film, the highest power factor of the flexible thermoelectric film with 1.0% graphene at room temperature reaches 1.56 mW/(K2·m), increased by 71%, while the cooling temperature difference is doubled. Using this high-performance graphene/Bi0.5Sb1.5Te3 flexible thermoelectric film cooling, a cascade structure high-efficiency in-plane heat dissipation device is designed and fabricated. The device can dissipate heat from the heat source area to the heat dissipation area step by step and reduce the temperature of the heat source area by 1.4–1.9 ℃, showing an efficient and stable in-plane heat dissipation capability.-
Keywords:
- graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films /
- electrical transport properties /
- fast carrier transport channel /
- in-plane heat dissipation device
[1] Anandan S S, Ramalingam V 2008 Therm. Sci. 12 5Google Scholar
[2] 郭磊 2013 低温与超导 42 62Google Scholar
Guo L 2013 Cryo. Supercond. 42 62Google Scholar
[3] Ali H M, Ashraf M J, Giovannelli A, Irfan M, Irshad T B, Hamid H M, Hassan F, Arshad A 2018 Int. J. Heat Mass Tran. 123 272Google Scholar
[4] 汤勇, 孙亚隆, 唐恒, 万珍平, 袁伟 2021 机械工程学报 57 1
Tang Y, Sun Y L, Tang H, Wan Z P, Yuan W 2021 J. Mech. Eng. 57 1
[5] 王晗, 袁礼, 王超, 王如志 2021 物理学报 70 104401Google Scholar
Wang H, Yuan L, Wang C, Wang R Z 2021 Acta Phys. Sin. 70 104401Google Scholar
[6] Yu Y D, Zhu W, Kong X X, Wang Y L, Zhu P C, Deng Y 2020 Front. Chem. Sci. Eng. 14 492Google Scholar
[7] 祝薇, 邓元, 王瑶, 高洪利, 胡少雄 2015 北京航空航天大学学报 41 1435Google Scholar
Zhu W, Deng Y, Wang Y, Gao H L, Hu S X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 1435Google Scholar
[8] Kim C, Park S, Yoon J, Shen H, Jeong M W, Lee H, Joo Y, Joo Y C 2019 Electron. Mater. Lett. 15 686Google Scholar
[9] Goncalves L M, Rocha J G, Couto C, Aipuim P, Min G, Rowe D M, Correia J H 2007 J. Micromech. Microeng. 17 168Google Scholar
[10] Tan M, Deng Y, Hao Y M 2014 Sci. Adv. Mater. 6 1Google Scholar
[11] Shen H, Lee S, Kang J G, Eom T Y, Lee H, Kang C, Han S 2018 J. Alloy. Compd. 767 522Google Scholar
[12] Liu S Y, Li G J, Lan M D, Piao Y J, Zhang Y N, Wang Q 2020 Curr. Appl. Phys. 20 400Google Scholar
[13] Shang H J, Ding F Z, Deng Y, Zhang H, Dong Z B, Xu W J, Huang D X, Gu H W, Chen Z G 2018 Nanoscale 10 20189Google Scholar
[14] Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar
[15] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar
Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar
[16] Kang W S, Chou W C, Li W J, Shen T H, Lin C S 2018 Thin Solid Films 660 108Google Scholar
[17] Madan D, Wang Z Q, Chen A, Winslow R, Wright P K, Evans J W 2014 Appl. Phys. Lett. 104 013902Google Scholar
[18] Lu Z Y, Layani M, Zhao X X, Tan L P, Sun T, Fan S F, Yan Q Y, Magdassi S, Hng H H 2014 Small 10 3551Google Scholar
[19] Hollar C, Lin Z Y, Kongara M, Varghese T, Karthik C, Schimpy J, Eixenherger J, Davis P H., Wu Y Q, Duan X F, Zhang Y L, Estrada D 2020 Adv. Mater. Technol. 5 2000600Google Scholar
[20] Cao Z, Koukharenko E, Tudor M J, Torah R N, Beeby S P 2016 Sensor. Actuat. A 238 196Google Scholar
[21] Shin S, Kumar R, Roh J W, Ko D S, Kim H S, Kim S I, Yin L, Schlossberg S M, Cui S, You J M, Kwon S, Zheng J L, Wang J, Chen Renkun 2017 Sci. Rep. 7 7317Google Scholar
[22] Hou W K, Nie X L, Zhao W Y, Zhou H Y, Mu X, Zhu W T, Zhang Q J 2018 Nano Energy 50 766Google Scholar
[23] Park S H, Jo S, Kwon B, Kim F, Ban H W, Lee J E, Gu D H, Lee S H, Hwang Y, Kim J S, Hyun D B, Lee S, Choi K J, Jo W, Son J S 2016 Nat. Commun. 7 13403Google Scholar
[24] Feng J J, Zhu W, Deng Y, Song Q S, Zhang Q Q 2019 ACS Appl. Energy Mater. 2 2828Google Scholar
[25] Varghese T, Dun C, Kempf N, Saeidi-Javash M, Karthik C, Richardson J, Hollar C, Estrada D, Zhang Y L 2020 Adv. Funct. Mater. 30 1905796Google Scholar
[26] Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar
[27] Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G J, Chen L D 2017 Energy Environ. Sci. 10 183Google Scholar
[28] Rahman J U, Du N V, Nam W H, Shin W H, Lee K H, Seo W S, Kim M H, Lee S 2019 Sci. Rep. 9 8624Google Scholar
[29] 刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (第7版) (北京: 电子工业出版社) 第187–190页
Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp187–190
[30] Choi J, Lee K, Park C R, Kim H 2015 Carbon 94 577Google Scholar
[31] 冯雪飞 2014 博士学位论文 (合肥: 中国科学技术大学)
Feng X F 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
-
图 2 复合热电薄膜的SEM图像 (a) G00, (b) G05, (c) G10, (d) G15, (e) G20的表面二次电子图像; (f) 孔隙率与x的关系; (g) G00, (h) G10的截面二次电子图像
Fig. 2. SEM images of the composite thermoelectric films: The surface secondary electron images of (a) G00, (b) G05, (c) G10, (d) G15, (e) G20; (f) the porosities versus x; the sectional secondary electron images of (g) G00, (h) G10.
图 4 Bi0.5Sb1.5Te3和石墨烯的能带图 (a) Bi0.5Sb1.5Te3的UPS光谱; (b)石墨烯的UPS光谱; (c) 金标样的UPS光谱; (d) Bi0.5Sb1.5Te3和石墨烯接触前后的界面能带结构示意图
Fig. 4. Band diagram of Bi0.5Sb1.5Te3 and graphene: (a) UPS spectrum of Bi0.5Sb1.5Te3; (b) UPS spectrum of graphene; (c) UPS spectrum of gold standard; (d) schematic diagram of the interface energy band structure before and after contact between Bi0.5Sb1.5Te3 and graphene.
图 5 单臂原型器件G00D和G10D制冷端和散热端温度在不同工作电流下随测试时间的变化曲线(蓝色实线为G00D曲线, 红色实线为G10D曲线, 黑色虚线为Tr曲线) (a) I = 0.06 A; (b) I = 0.08 A; (c) I = 0.10 A; (d) I = 0.15 A; (e) I = 0.20 A
Fig. 5. Time-dependent cooling performance of G00D and G10D under different working currents (the blue solid lines represent G00D, the red solid ones represent G10D, the black dash ones represent Tr): (a) I = 0.06 A; (b) I = 0.08 A; (c) I = 0.10 A; (d) I = 0.15 A; (e) I = 0.20 A.
图 6 面内散热器件 (a) 结构设计图; (b) COMSOL模拟温度场分布图; (c) 实物照片; (d) 红外热成像仪拍摄的温度场分布图
Fig. 6. In-plane heat dissipation device: (a) The structure diagram; (b) temperature distribution map simulated by COMSOL; (c) digital photo of the as-fabricated device; (d) temperature distribution map captured by an infrared thermal imager.
-
[1] Anandan S S, Ramalingam V 2008 Therm. Sci. 12 5Google Scholar
[2] 郭磊 2013 低温与超导 42 62Google Scholar
Guo L 2013 Cryo. Supercond. 42 62Google Scholar
[3] Ali H M, Ashraf M J, Giovannelli A, Irfan M, Irshad T B, Hamid H M, Hassan F, Arshad A 2018 Int. J. Heat Mass Tran. 123 272Google Scholar
[4] 汤勇, 孙亚隆, 唐恒, 万珍平, 袁伟 2021 机械工程学报 57 1
Tang Y, Sun Y L, Tang H, Wan Z P, Yuan W 2021 J. Mech. Eng. 57 1
[5] 王晗, 袁礼, 王超, 王如志 2021 物理学报 70 104401Google Scholar
Wang H, Yuan L, Wang C, Wang R Z 2021 Acta Phys. Sin. 70 104401Google Scholar
[6] Yu Y D, Zhu W, Kong X X, Wang Y L, Zhu P C, Deng Y 2020 Front. Chem. Sci. Eng. 14 492Google Scholar
[7] 祝薇, 邓元, 王瑶, 高洪利, 胡少雄 2015 北京航空航天大学学报 41 1435Google Scholar
Zhu W, Deng Y, Wang Y, Gao H L, Hu S X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 1435Google Scholar
[8] Kim C, Park S, Yoon J, Shen H, Jeong M W, Lee H, Joo Y, Joo Y C 2019 Electron. Mater. Lett. 15 686Google Scholar
[9] Goncalves L M, Rocha J G, Couto C, Aipuim P, Min G, Rowe D M, Correia J H 2007 J. Micromech. Microeng. 17 168Google Scholar
[10] Tan M, Deng Y, Hao Y M 2014 Sci. Adv. Mater. 6 1Google Scholar
[11] Shen H, Lee S, Kang J G, Eom T Y, Lee H, Kang C, Han S 2018 J. Alloy. Compd. 767 522Google Scholar
[12] Liu S Y, Li G J, Lan M D, Piao Y J, Zhang Y N, Wang Q 2020 Curr. Appl. Phys. 20 400Google Scholar
[13] Shang H J, Ding F Z, Deng Y, Zhang H, Dong Z B, Xu W J, Huang D X, Gu H W, Chen Z G 2018 Nanoscale 10 20189Google Scholar
[14] Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar
[15] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar
Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar
[16] Kang W S, Chou W C, Li W J, Shen T H, Lin C S 2018 Thin Solid Films 660 108Google Scholar
[17] Madan D, Wang Z Q, Chen A, Winslow R, Wright P K, Evans J W 2014 Appl. Phys. Lett. 104 013902Google Scholar
[18] Lu Z Y, Layani M, Zhao X X, Tan L P, Sun T, Fan S F, Yan Q Y, Magdassi S, Hng H H 2014 Small 10 3551Google Scholar
[19] Hollar C, Lin Z Y, Kongara M, Varghese T, Karthik C, Schimpy J, Eixenherger J, Davis P H., Wu Y Q, Duan X F, Zhang Y L, Estrada D 2020 Adv. Mater. Technol. 5 2000600Google Scholar
[20] Cao Z, Koukharenko E, Tudor M J, Torah R N, Beeby S P 2016 Sensor. Actuat. A 238 196Google Scholar
[21] Shin S, Kumar R, Roh J W, Ko D S, Kim H S, Kim S I, Yin L, Schlossberg S M, Cui S, You J M, Kwon S, Zheng J L, Wang J, Chen Renkun 2017 Sci. Rep. 7 7317Google Scholar
[22] Hou W K, Nie X L, Zhao W Y, Zhou H Y, Mu X, Zhu W T, Zhang Q J 2018 Nano Energy 50 766Google Scholar
[23] Park S H, Jo S, Kwon B, Kim F, Ban H W, Lee J E, Gu D H, Lee S H, Hwang Y, Kim J S, Hyun D B, Lee S, Choi K J, Jo W, Son J S 2016 Nat. Commun. 7 13403Google Scholar
[24] Feng J J, Zhu W, Deng Y, Song Q S, Zhang Q Q 2019 ACS Appl. Energy Mater. 2 2828Google Scholar
[25] Varghese T, Dun C, Kempf N, Saeidi-Javash M, Karthik C, Richardson J, Hollar C, Estrada D, Zhang Y L 2020 Adv. Funct. Mater. 30 1905796Google Scholar
[26] Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar
[27] Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G J, Chen L D 2017 Energy Environ. Sci. 10 183Google Scholar
[28] Rahman J U, Du N V, Nam W H, Shin W H, Lee K H, Seo W S, Kim M H, Lee S 2019 Sci. Rep. 9 8624Google Scholar
[29] 刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (第7版) (北京: 电子工业出版社) 第187–190页
Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp187–190
[30] Choi J, Lee K, Park C R, Kim H 2015 Carbon 94 577Google Scholar
[31] 冯雪飞 2014 博士学位论文 (合肥: 中国科学技术大学)
Feng X F 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
计量
- 文章访问数: 4555
- PDF下载量: 118
- 被引次数: 0