-
针对温差发电器的局限性, 利用热超构材料的热场调控特性, 提出了将温差发电器与二维扇形热超构材料能量收集结构进行集成, 从而改善温差发电器的热电转换效率. 基于有限元多物理场仿真软件COMSOL Multiphysics研究了不同材料对能量收集结构热场调控性能的影响, 确定材料后对其进行热电性能仿真, 仿真结果表明, 能量收集结构可实现热流的有效调控, 在同一仿真条件下能量收集中心的温度梯度相比自然材料提高了8倍. 对不同尺寸温差发电器发电量进行研究, 在此基础上综合考虑加工精度和测试难度, 完成了能量收集结构3维建模及加工制造. 搭建实验测试系统, 使用热成像仪观测能量收集结构的温度分布, 测试实验结果显示该能量收集结构可以有效调控热场, 在相同冷热源条件下相比自然材料结构可以将温差发电器的工作效率提高3.2倍, 对推动温差发电技术更加迅速地发展具有一定的现实意义.Considering the limitations of thermoelectric generators, the integration of thermoelectric generator with two-dimensional fan-shaped thermal metamaterial energy harvesting device is proposed to improve the thermal-to-electrical energy conversion efficiency of thermoelectric generator (TEG) by regulating the thermal field. Based on the COMSOL Multiphysics software simulation, the influences of different materials on the performances of energy harvesting devices in thermal field regulation are investigated. The performances of the selected materials are simulated , indicating that the energy harvesting device can effectively regulate heat flow, the temperature gradient in the center of it is increased by eight times compared with the natural material under the same simulation conditions. The generated electrical energy of thermoelectric generators of different sizes is studied, then three-dimensional modeling and processing of the energy harvesting device are completed by carefully considering the processing accuracy and testing difficulty. The experimental test system is set up to observe the temperature distribution of the energy harvesting device equipped with an infrared thermal imager, The test results demonstrate that the energy harvesting device can effectively regulate the thermal field. In comparison with the natural material, the working efficiency of the thermoelectric generators can be increased by 3.2 times under the same experimental condition, which has specific practical significance for promoting the rapid development of thermoelectric power generation technology.
-
Keywords:
- thermoelectric generator /
- thermal metamaterials /
- thermal field regulation /
- heat energy harvesting
[1] 史尧光 2018 博士学位论文 (杭州: 浙江大学)
Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[3] Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar
[4] Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar
[5] Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar
[6] Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar
[7] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar
[8] Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar
[9] Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar
[10] Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar
[11] Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar
[12] Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar
[13] Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar
[14] Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar
[15] Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar
[16] Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar
[17] Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar
[18] Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar
[19] Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar
[20] Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar
[21] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar
[22] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar
[23] Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar
[24] Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar
[25] Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar
[26] Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1
[27] Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar
[28] García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar
[29] Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar
[30] Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar
[31] Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar
[32] Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar
[33] Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar
[34] Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar
[35] Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar
[36] Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar
[37] Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar
[38] 刘文美 2017 硕士学位论文 (北京: 清华大学)
Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)
[39] 张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar
Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar
[40] 陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar
Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar
[41] 刘金城 2021 铸造 70 1372Google Scholar
Liu J C 2021 Foundry 70 1372Google Scholar
[42] Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar
-
表 1 Be2Te3材料的基本参数
Table 1. Basic parameters of Be2Te3 material.
参数名称 取值范围 单位 恒压热容 154 J/(kg·K) 密度 7700 kg/m3 塞贝克系数 2.1×10–4—2.3×10–4 V/K 导热系数 1.3—1.6 W/(m·K) 电导率 0.5×105—0.7×105 S/m 相对介电常数 1 量纲一 表 2 不同厚度温差发电器热电仿真结果
Table 2. Thermoelectric simulation results of thermoelectric generators with different thicknesses.
热电器件
厚度/mm上下两端
温差/K温度梯度/
(K·mm–1)产生电势/mV 8 41.5 5.2 –7.57 6 40.4 6.7 –7.34 4 39.7 9.9 –7.12 表 3 能量收集结构中温差发电片发电量
Table 3. Power generation of the thermoelectric generator placed in the energy harvesting structure.
测试序号 最大发电量/mW 结束时发电量/mW 1 9.91 8.57 2 8.97 7.99 3 9.63 8.31 平均值 9.50 8.29 表 4 单一不锈钢结构中温差发电片发电量
Table 4. Power generation of the thermoelectric generator placed in the single stainless steel structure.
测试序号 最大发电量/mW 结束时发电量/mW 1 5.07 2.45 2 5.33 2.88 3 5.26 2.23 平均值 5.22 2.52 -
[1] 史尧光 2018 博士学位论文 (杭州: 浙江大学)
Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[3] Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar
[4] Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar
[5] Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar
[6] Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar
[7] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar
[8] Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar
[9] Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar
[10] Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar
[11] Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar
[12] Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar
[13] Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar
[14] Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar
[15] Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar
[16] Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar
[17] Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar
[18] Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar
[19] Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar
[20] Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar
[21] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar
[22] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar
[23] Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar
[24] Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar
[25] Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar
[26] Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1
[27] Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar
[28] García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar
[29] Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar
[30] Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar
[31] Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar
[32] Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar
[33] Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar
[34] Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar
[35] Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar
[36] Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar
[37] Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar
[38] 刘文美 2017 硕士学位论文 (北京: 清华大学)
Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)
[39] 张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar
Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar
[40] 陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar
Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar
[41] 刘金城 2021 铸造 70 1372Google Scholar
Liu J C 2021 Foundry 70 1372Google Scholar
[42] Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar
计量
- 文章访问数: 5543
- PDF下载量: 106
- 被引次数: 0