搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热超构材料的能量收集与热电转换特性

李一鸣 王鑫 李昊 杜宪 孙鹏

引用本文:
Citation:

基于热超构材料的能量收集与热电转换特性

李一鸣, 王鑫, 李昊, 杜宪, 孙鹏

Energy harvesting and thermoelectric conversion characteristics based on thermal metamaterials

Li Yi-Ming, Wang Xin, Li Hao, Du Xian, Sun Peng
PDF
HTML
导出引用
  • 针对温差发电器的局限性, 利用热超构材料的热场调控特性, 提出了将温差发电器与二维扇形热超构材料能量收集结构进行集成, 从而改善温差发电器的热电转换效率. 基于有限元多物理场仿真软件COMSOL Multiphysics研究了不同材料对能量收集结构热场调控性能的影响, 确定材料后对其进行热电性能仿真, 仿真结果表明, 能量收集结构可实现热流的有效调控, 在同一仿真条件下能量收集中心的温度梯度相比自然材料提高了8倍. 对不同尺寸温差发电器发电量进行研究, 在此基础上综合考虑加工精度和测试难度, 完成了能量收集结构3维建模及加工制造. 搭建实验测试系统, 使用热成像仪观测能量收集结构的温度分布, 测试实验结果显示该能量收集结构可以有效调控热场, 在相同冷热源条件下相比自然材料结构可以将温差发电器的工作效率提高3.2倍, 对推动温差发电技术更加迅速地发展具有一定的现实意义.
    Considering the limitations of thermoelectric generators, the integration of thermoelectric generator with two-dimensional fan-shaped thermal metamaterial energy harvesting device is proposed to improve the thermal-to-electrical energy conversion efficiency of thermoelectric generator (TEG) by regulating the thermal field. Based on the COMSOL Multiphysics software simulation, the influences of different materials on the performances of energy harvesting devices in thermal field regulation are investigated. The performances of the selected materials are simulated , indicating that the energy harvesting device can effectively regulate heat flow, the temperature gradient in the center of it is increased by eight times compared with the natural material under the same simulation conditions. The generated electrical energy of thermoelectric generators of different sizes is studied, then three-dimensional modeling and processing of the energy harvesting device are completed by carefully considering the processing accuracy and testing difficulty. The experimental test system is set up to observe the temperature distribution of the energy harvesting device equipped with an infrared thermal imager, The test results demonstrate that the energy harvesting device can effectively regulate the thermal field. In comparison with the natural material, the working efficiency of the thermoelectric generators can be increased by 3.2 times under the same experimental condition, which has specific practical significance for promoting the rapid development of thermoelectric power generation technology.
      通信作者: 王鑫, wangxin219@imu.edu.cn
    • 基金项目: 国家级大学生创新创业训练计划 (批准号: 202110126036)资助的课题.
      Corresponding author: Wang Xin, wangxin219@imu.edu.cn
    • Funds: Project supported by the Regional Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 202110126036).
    [1]

    史尧光 2018 博士学位论文 (杭州: 浙江大学)

    Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar

    [4]

    Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar

    [5]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [6]

    Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar

    [7]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar

    [8]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar

    [9]

    Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar

    [10]

    Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar

    [11]

    Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar

    [12]

    Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar

    [13]

    Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar

    [14]

    Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar

    [15]

    Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar

    [16]

    Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar

    [17]

    Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar

    [18]

    Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar

    [19]

    Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar

    [20]

    Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar

    [21]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [22]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar

    [23]

    Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [24]

    Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar

    [25]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [26]

    Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1

    [27]

    Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar

    [28]

    García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar

    [29]

    Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar

    [30]

    Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar

    [31]

    Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar

    [32]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar

    [33]

    Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [34]

    Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar

    [35]

    Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar

    [36]

    Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar

    [37]

    Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [38]

    刘文美 2017 硕士学位论文 (北京: 清华大学)

    Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [39]

    张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar

    Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar

    [40]

    陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar

    Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar

    [41]

    刘金城 2021 铸造 70 1372Google Scholar

    Liu J C 2021 Foundry 70 1372Google Scholar

    [42]

    Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar

  • 图 1  二维扇形能量收集结构示意图

    Fig. 1.  Schematic of the fan-shaped energy harvesting structure.

    图 2  铝合金与树脂交替排布实现热流调控

    Fig. 2.  Control of the heat flow by alternately arranging the AlSi10Mg and resin.

    图 3  采用不锈钢基底与铝合金基底的能量收集结构温度梯度图

    Fig. 3.  Temperature gradients of energy harvesting structures respectively using stainless steel or AlSi10Mg substrate.

    图 4  单一不锈钢结构与能量收集结构的温度分布与热流分布图 (a) 单一不锈钢结构; (b) 能量收集结构

    Fig. 4.  Temperature and heat flow distribution of single stainless steel structure and energy harvesting structure: (a) Stainless steel structure; (b) energy harvesting structure.

    图 5  温差发电器件放置于单一不锈钢或能量收集结构的电势量 (a) 单一不锈钢结构; (b) 能量收集结构

    Fig. 5.  The power generation of thermoelectric generators placed in a single stainless steel or energy harvesting structure: (a) Stainless steel structure; (b) energy harvesting structure.

    图 6  放置温差发电器前后能量收集结构温度与热流分布图 (a) 放置温差发电器; (b)未放置温差发电器

    Fig. 6.  Temperature and heat flow distribution of the energy harvesting structure before and after placing the thermoelectric generator: (a) With thermoelectric generator; (b) without thermoelectric generator.

    图 7  消费类温差发电器结构示意图

    Fig. 7.  Schematic of common thermoelectric genetators.

    图 8  能量收集结构三维模型图 (a) 不锈钢基底; (b) 树脂扇形区域; (c) 铝合金扇形区域

    Fig. 8.  3D model diagram of the energy harvesting structure: (a) Stainless steel substrate; (b) resin sectors; (c) AlSi10Mg sectors.

    图 9  集成温差发电器的能量收集结构装配模型图

    Fig. 9.  Model diagram of the energy harvesting structure with the thermoelectric generator.

    图 10  能量收集结构实验测试系统

    Fig. 10.  Experimental test system for energy harvesting structure.

    图 11  单一不锈钢结构实验测试系统

    Fig. 11.  Experimental test system for single stainless steel structure.

    图 12  红外热成像仪测试结果图 (a) 能量收集结构; (b) 单一不锈钢结构

    Fig. 12.  Test results by the infrared thermal imager: (a) Energy harvesting structure; (b) stainless steel structure.

    表 1  Be2Te3材料的基本参数

    Table 1.  Basic parameters of Be2Te3 material.

    参数名称取值范围单位
    恒压热容154J/(kg·K)
    密度7700kg/m3
    塞贝克系数2.1×10–4—2.3×10–4V/K
    导热系数1.3—1.6W/(m·K)
    电导率0.5×105—0.7×105S/m
    相对介电常数1量纲一
    下载: 导出CSV

    表 2  不同厚度温差发电器热电仿真结果

    Table 2.  Thermoelectric simulation results of thermoelectric generators with different thicknesses.

    热电器件
    厚度/mm
    上下两端
    温差/K
    温度梯度/
    (K·mm–1)
    产生电势/mV
    841.55.2–7.57
    640.46.7–7.34
    439.79.9–7.12
    下载: 导出CSV

    表 3  能量收集结构中温差发电片发电量

    Table 3.  Power generation of the thermoelectric generator placed in the energy harvesting structure.

    测试序号最大发电量/mW结束时发电量/mW
    19.918.57
    28.977.99
    39.638.31
    平均值9.508.29
    下载: 导出CSV

    表 4  单一不锈钢结构中温差发电片发电量

    Table 4.  Power generation of the thermoelectric generator placed in the single stainless steel structure.

    测试序号最大发电量/mW结束时发电量/mW
    15.072.45
    25.332.88
    35.262.23
    平均值5.222.52
    下载: 导出CSV
  • [1]

    史尧光 2018 博士学位论文 (杭州: 浙江大学)

    Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar

    [4]

    Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar

    [5]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [6]

    Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar

    [7]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar

    [8]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar

    [9]

    Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar

    [10]

    Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar

    [11]

    Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar

    [12]

    Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar

    [13]

    Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar

    [14]

    Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar

    [15]

    Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar

    [16]

    Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar

    [17]

    Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar

    [18]

    Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar

    [19]

    Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar

    [20]

    Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar

    [21]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [22]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar

    [23]

    Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [24]

    Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar

    [25]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [26]

    Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1

    [27]

    Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar

    [28]

    García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar

    [29]

    Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar

    [30]

    Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar

    [31]

    Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar

    [32]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar

    [33]

    Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [34]

    Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar

    [35]

    Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar

    [36]

    Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar

    [37]

    Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [38]

    刘文美 2017 硕士学位论文 (北京: 清华大学)

    Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [39]

    张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar

    Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar

    [40]

    陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar

    Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar

    [41]

    刘金城 2021 铸造 70 1372Google Scholar

    Liu J C 2021 Foundry 70 1372Google Scholar

    [42]

    Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar

  • [1] 王杨涛, 景蔚萱, 韩枫, 孟庆之, 林启敬, 赵立波, 蒋庄德. 圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究. 物理学报, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [2] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国. 霍尔天平材料的多场调控. 物理学报, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [5] 相阳, 郑军, 李春雷, 王小明, 袁瑞旸. 圆偏振光场调控的锡烯纳米带热自旋输运. 物理学报, 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [6] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [7] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [8] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [9] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [10] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [11] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用. 物理学报, 2016, 65(17): 178103. doi: 10.7498/aps.65.178103
    [12] 毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北. 脉冲微波辐射场空间分布的热声成像研究. 物理学报, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [13] 王飞, 彭岚, 张全壮, 刘佳. 水平温差对环形浅液池内Marangoni-热毛细对流的影响. 物理学报, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [14] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [15] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [16] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [17] 毕力格, 特古斯, 伊日勒图, 石海荣. 一级相变材料Mn1.2Fe0.8P0.4Si0.6的热磁发电性能. 物理学报, 2012, 61(7): 077103. doi: 10.7498/aps.61.077103
    [18] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [19] 张广基, 许少鸿. 测量场致发光电功吸收的量热法. 物理学报, 1962, 18(5): 250-253. doi: 10.7498/aps.18.250
    [20] 陈茂康. 较差脈流发电器. 物理学报, 1935, 1(3): 68-78. doi: 10.7498/aps.1.68
计量
  • 文章访问数:  3274
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 修回日期:  2022-06-27
  • 上网日期:  2022-10-10
  • 刊出日期:  2022-10-20

/

返回文章
返回