搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线极化与圆极化波均可吸收的太赫兹超表面

吴柔兰 李九生

引用本文:
Citation:

线极化与圆极化波均可吸收的太赫兹超表面

吴柔兰, 李九生

Terahertz metasurface absorbed by both linearly and circularly polarized waves

Wu Rou-Lan, Li Jiu-Sheng
PDF
HTML
导出引用
  • 利用VO2嵌入超表面设计了一种实现不同频率, 且线极化和圆极化两种模式入射下均产生高效率吸收的太赫兹超表面. 当VO2为绝缘态时, 设计的超表面对圆极化波的旋向产生选择性吸收, 在1.30 THz处对左旋圆极化波产生的吸收率大于95%, 对右旋圆极化波不吸收, 圆二色性为0.85. 当VO2为金属态时, 在1.95 THz处, 该超表面对TE线极化入射波吸收率达到98.5%. 结果表明, 在线极化和圆极化波入射下, 所设计的超表面结构具有良好的广角吸收性能. 由于它具有形态简单、易于加工等特点, 在太赫兹波传感、成像和通信领域具有广阔的应用前景.
    In recent years, the development of ultrafast laser technology has provided a stable and reliable terahertz source for generating terahertz wave pulses, and the great research progress of terahertz wave has been made. As a new type of two-dimensional artificial metamaterial, metasurface can effectively control the transmission, reflection and polarization of electromagnetic waves, which has attracted the extensive attention. Most of the reported terahertz absorbers so far are based on metasurfaces with linear polarization incidence, and few studies have been conducted on terahertz metasurfaces that can produce efficient absorption at both linear and circular polarization incidence, which limits the practical application areas. Therefore, it is necessary to explore an efficient absorber which can realize both linear polarization and circular polarization. We propose a vanadium dioxide composite metasurface structure. The vanadium dioxide is a typical temperature-controlled phase change material, and its conductivity will undergo a huge mutation in the phase change process. When the temperature is lower than the critical temperature (68 ℃), the vanadium dioxide has high resistivity and good insulation performance. When the temperature is higher than the critical temperature, the resistance changes from high resistance state to low resistance state, showing metal characteristics. By changing the external temperature, the phase of vanadium dioxide is changed, the free switching frequency is achieved and both the linear polarization and circular polarization incident efficient absorption are realized. When the vanadium dioxide is insulated, its conductivity is 0 S/m, the metasurface can absorb left-handed circularly polarized wave at 1.30 THz and reflect the incident right-handed circularly polarized wave, and the circular dichroism is 0.85. When the vanadium dioxide is metallic, its conductivity is 2×105 S/m and it possesses linearly polarized incident metasurface, the absorption rate of TE linearly polarized incident wave by metasurface reaches 98.5% at 1.95 THz, and the perfect absorption of terahertz wave is realized. The structure has good wide-angle absorption performance for both TE polarization wave and left-handed circularly polarized wave. This composite metasurface structure can achieve the good absorption effect of terahertz waves with different frequencies and different polarization states. Therefore, the design concept of the composite metasurface structure can be used for designing other metasurface terahertz devices, and also for implementing the terahertz imaging and sensing systems due to different response characteristics to different polarization signals.
      通信作者: 李九生, lijsh2008@126.com
    • 基金项目: 国家自然科学基金(批准号: 61871355, 61831012)、浙江省科技厅人才工程 (批准号: 2018R52043)和浙江省重点研发项目 (批准号: 2021C03153, 2022C03166)资助的课题.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012), the Talent Project of Zhejiang Provincial Department of Science and Technology, China (Grant No. 2018R52043), and the Zhejiang Key R & D Project of China (Grant Nos. 2021C03153, 2022C03166).
    [1]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Technol. Electron. Eng. 20 591Google Scholar

    [2]

    Xu B L, Zhong R B, Liang Z K, et al. 2022 Front Mater 9 881229Google Scholar

    [3]

    Zheng Z P, Luo Y, Yang H, et al. 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar

    [4]

    Zhang Y G, Qiu F, Liang L J, Yao H Y, Yan X, Liu W J, Huang C C, Yao J Q 2022 Opt. Express 30 24703Google Scholar

    [5]

    Tang B, Ren Y 2022 Phys. Chem. Chem. Phys. 24 8408Google Scholar

    [6]

    Luo H, Wang X, Qian H 2021 J. Opt. Soc. Am. B 38 2638Google Scholar

    [7]

    Aghili S, Amini A, Dizaj L S, Dolgaleva K 2022 Opt. Commun. 508 127805Google Scholar

    [8]

    Zhu L, Zhao X, Miao F J, Ghosh B K, Dong L, Tao B R, Meng F Y, Li W N 2019 Opt. Express 27 12163Google Scholar

    [9]

    Zhang Y D, Liu H Q, Xu R G, Qin Z J, Teng C X, Deng S J, Chen M, Cheng Y, Deng H C, Yang H Y, Qu S L, Yuan L B 2021 Opt. Express 29 21020Google Scholar

    [10]

    Wang X Y, Ma C, Xiao L H, et al. 2022 Appl. Opt. 61 1646Google Scholar

    [11]

    Li R, Pan M, Yi Z, Yu J X, Shi P C, Luo H, Wu P H, Yang H, Wang S F, Gao G C 2022 Opt. Laser Technol. 153 108284Google Scholar

    [12]

    Chen X Y, Tian Z, Lu Y C, Xu Y H, Zhang X Q, Ouyang C M, Gu J Q, Han J G, Zhang W L 2020 Adv. Optical Mater. 8 1900660Google Scholar

    [13]

    Hu N, Wu F L, Bian L A, Liu H Q, Liu P G 2018 Opt. Mater. Express 8 3899Google Scholar

    [14]

    杨鹏 韩天成 2018 物理学报 67 107801Google Scholar

    Yang P, Han T C 2018 Acta Phys. Sin. 67 107801Google Scholar

    [15]

    Yan D X, Li J S 2019 Laser Phys. 29 046203Google Scholar

    [16]

    Divdel H, Taghipour-Farshi H, Saghai H R, Jahani M A T G 2020 Opt. Eng. 59 127108Google Scholar

    [17]

    Zhao Y, Zeng L, Zhang X L, Ye H N, Zhang H F 2021 J. Opt. 23 085102Google Scholar

    [18]

    Liang S, Zhu Z B, Jiang L Y 2022 Eng. Res. Express 4 035006Google Scholar

    [19]

    Li Z W, Li J S 2021 Appl. Opt. 60 2450Google Scholar

    [20]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905Google Scholar

    [21]

    Wang T L, Zhang Y P, Zhang H Y, Cao M Y 2020 Opt. Mater. Express 10 369Google Scholar

  • 图 1  所设计的工作频率可切换, 对线极化和圆极化入射波均产生完美吸收的太赫兹吸收器结构示意图 (a) 三维结构图; (b) 单元俯视图

    Fig. 1.  Schematic diagram of the designed terahertz absorber with switchable operating frequency and perfect absorption for both linearly polarized and circularly polarized waves incidence: (a) 3D structure diagram; (b) top view of the unit.

    图 2  LCP波和RCP波入射下所设计超表面结构的电磁响应曲线 (a)反射系数; (b)吸收率及圆二色性

    Fig. 2.  Electromagnetic response curves of the designed metasurface structures under the incident of LCP and RCP waves: (a) Reflection coefficient; (b) absorption and circular dichroism.

    图 3  LCP和RCP太赫兹波入射下的电场分布图与电流分布图 (a) RCP入射下的电场分布; (b) LCP入射下的电场分布; (c) RCP入射下的电流分布; (d) LCP入射下的电流分布

    Fig. 3.  Electric field distribution diagram and current distribution diagram under the LCP and RCP waves incidence: (a) Electric field distribution under RCP incidence; (b) electric field distribution under LCP incidence; (c) current distribution under RCP incidence; (d) current distribution under LCP incidence.

    图 4  不同结构参数对所设计超表面的CD影响情况 (a) 线宽w1; (b) 线宽w2; (c) 间隙θ

    Fig. 4.  Influence of different structural parameters on the CD of the designed metasurface: (a) Line width w1; (b) line width w2; (c) angle θ

    图 5  入射角对所设计超表面的吸收特性影响 (a) LCP; (b) CD

    Fig. 5.  Incident angle vs. absorption properties of the designed metasurface: (a) LCP; (b) CD.

    图 6  TE波和TM波入射下所设计结构的电磁响应曲线 (a) 反射系数; (b) 吸收率

    Fig. 6.  Electromagnetic response curves of the designed structures under the incident of TE and TM waves: (a) Reflection coefficient; (b) absorption.

    图 7  LCP和RCP太赫兹波入射到所设计超表面结构产生的电磁响应曲线 (a) 反射系数; (b) 吸收率及圆二色性

    Fig. 7.  Electromagnetic response curves of the designed structures under LCP and RCP waves incidence: (a) Reflection coefficient; (b) absorption and circular dichroism.

    图 8  TE和TM极化太赫兹波入射到复合超表面结构产生的电磁响应曲线 (a) 反射谱; (b) 吸收谱

    Fig. 8.  Electromagnetic response curves of TE and TM polarized terahertz wave is incident on the designed composite metasurface structure: (a) Reflection coefficient; (b) absorption coefficient.

    图 9  TE波入射到复合超表面结构产生的等效阻抗实部与虚部

    Fig. 9.  Real and imaginary parts of the equivalent impedance of the designed composite metasurface structure under the TE wave incidence.

    图 10  TE波入射下, 复合超表面结构电场分布

    Fig. 10.  Electric field distribution of the designed composite metasurface structure under TE wave incidence.

    图 11  不同结构参数对线极化吸收影响 (a) w1; (b) w2; (c) R

    Fig. 11.  Influence of different structural parameters on linear polarization absorption: (a) w1; (b) w2; (c) R.

    图 12  线极化太赫兹波入射条件下, 不同入射角对复合超表面结构吸收性能的影响

    Fig. 12.  Different incident angles vs. absorption performance of the designed metasurface composite structure under the linearly polarized terahertz wave incidence.

  • [1]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Technol. Electron. Eng. 20 591Google Scholar

    [2]

    Xu B L, Zhong R B, Liang Z K, et al. 2022 Front Mater 9 881229Google Scholar

    [3]

    Zheng Z P, Luo Y, Yang H, et al. 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar

    [4]

    Zhang Y G, Qiu F, Liang L J, Yao H Y, Yan X, Liu W J, Huang C C, Yao J Q 2022 Opt. Express 30 24703Google Scholar

    [5]

    Tang B, Ren Y 2022 Phys. Chem. Chem. Phys. 24 8408Google Scholar

    [6]

    Luo H, Wang X, Qian H 2021 J. Opt. Soc. Am. B 38 2638Google Scholar

    [7]

    Aghili S, Amini A, Dizaj L S, Dolgaleva K 2022 Opt. Commun. 508 127805Google Scholar

    [8]

    Zhu L, Zhao X, Miao F J, Ghosh B K, Dong L, Tao B R, Meng F Y, Li W N 2019 Opt. Express 27 12163Google Scholar

    [9]

    Zhang Y D, Liu H Q, Xu R G, Qin Z J, Teng C X, Deng S J, Chen M, Cheng Y, Deng H C, Yang H Y, Qu S L, Yuan L B 2021 Opt. Express 29 21020Google Scholar

    [10]

    Wang X Y, Ma C, Xiao L H, et al. 2022 Appl. Opt. 61 1646Google Scholar

    [11]

    Li R, Pan M, Yi Z, Yu J X, Shi P C, Luo H, Wu P H, Yang H, Wang S F, Gao G C 2022 Opt. Laser Technol. 153 108284Google Scholar

    [12]

    Chen X Y, Tian Z, Lu Y C, Xu Y H, Zhang X Q, Ouyang C M, Gu J Q, Han J G, Zhang W L 2020 Adv. Optical Mater. 8 1900660Google Scholar

    [13]

    Hu N, Wu F L, Bian L A, Liu H Q, Liu P G 2018 Opt. Mater. Express 8 3899Google Scholar

    [14]

    杨鹏 韩天成 2018 物理学报 67 107801Google Scholar

    Yang P, Han T C 2018 Acta Phys. Sin. 67 107801Google Scholar

    [15]

    Yan D X, Li J S 2019 Laser Phys. 29 046203Google Scholar

    [16]

    Divdel H, Taghipour-Farshi H, Saghai H R, Jahani M A T G 2020 Opt. Eng. 59 127108Google Scholar

    [17]

    Zhao Y, Zeng L, Zhang X L, Ye H N, Zhang H F 2021 J. Opt. 23 085102Google Scholar

    [18]

    Liang S, Zhu Z B, Jiang L Y 2022 Eng. Res. Express 4 035006Google Scholar

    [19]

    Li Z W, Li J S 2021 Appl. Opt. 60 2450Google Scholar

    [20]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905Google Scholar

    [21]

    Wang T L, Zhang Y P, Zhang H Y, Cao M Y 2020 Opt. Mater. Express 10 369Google Scholar

  • [1] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [3] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面. 物理学报, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [4] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [6] 吐达洪·阿巴, 屈瑜, 白俊冉, 张中月. 平面复合金属微纳结构的圆二色性研究. 物理学报, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [7] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [8] 张军海, 王平稳, 韩煜, 康崇, 孙伟民. 共振线极化光实现原子矢量磁力仪的理论研究. 物理学报, 2018, 67(6): 060701. doi: 10.7498/aps.67.20172108
    [9] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响. 物理学报, 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [10] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [13] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [14] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [15] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [17] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [18] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [19] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [20] 胡建平, 胡克松, 陈裕涛. 环型线电流线极化wiggler. 物理学报, 1996, 45(7): 1130-1137. doi: 10.7498/aps.45.1130
计量
  • 文章访问数:  2386
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2022-12-12
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回