搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Au纳米岛修饰的CdSSe纳米带光电探测器

赵吉玉 谭秋红 刘磊 杨伟业 王前进 刘应开

引用本文:
Citation:

基于Au纳米岛修饰的CdSSe纳米带光电探测器

赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开

High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt

Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai
PDF
导出引用
  • 三元合金CdSxSe1-x兼具CdS和CdSe的物理性质,其带隙可以通过改变元素的组分来调节。该合金具有优异的光电性能,在光电器件方面具有潜在的应用价值。本文首先通过热蒸发法制备了单晶CdS0.42Se0.58纳米带器件,在550 nm光照及1 V偏压下,器件的光电流与暗电流之比为1.24×103,光响应度达60.1 A/W,外量子效率达1.36×104%,探测率达2.16×1011Jones,其上升/下降时间约为41.1/41.5 ms。其次,通过Au纳米岛修饰该CdS0.42Se0.58纳米带后,器件的光电性能显著提升,在550 nm光照及1 V偏压下,器件的光开关比、响应度、外量子效率及探测率分别提高了5.4倍、11.8倍、11.8倍和10.6倍,并且上升/下降时间均缩短了近一半。最后基于Au纳米岛的局域表面等离子共振解释了器件光电性能增强的微观物理机制,为在不增加器件面积的前提下,制备高性能光电探测器提供了一种有效策略。
    The ternary alloy CdSxSe1-x has the physical properties of CdS and CdSe, and its band gap can be adjusted by changing the component ratios of the elements. The alloy has excellent photoelectric properties and has potential application in optoelectronic devices. Although people have made some progress in the CdSSe-based photodetectors, their performance are still far from the commercial requirements, so how to improve the performance of the device is the focus of current research. In this paper, a single crystal CdS0.42Se0.58 nanobelt device was firstly prepared by thermal evaporation. Under 550 nm illumination and 1 V bias, the ratio of photocurrent to dark current of the device was 1.24×103, the responsivity reached 60.1 A/W, and the external quantum efficiency reached 1.36×104%, the detectivity is 2.16×1011 Jones. Its rise/fall time is about 41.1/41.5 ms. Secondly, after the CdSSe nanobelt was decorated by Au nanoislands, the optoelectronic performance of the device is significantly improved. Under 550 nm illumination and 1 V bias, the Ilight/Idark ratio, responsivity, external quantum efficiency and detectivity of the device are increased by 5.4, 11.8, 11.8 and 10.6 times, respectively, and the rise/fall time are both reduced to half of that of single CdSSe nanobelt. Finally, the microscopic physical mechanism of the enhanced optoelectronic performance of the device is explained based on localized surface plasmon resonance of Au nanoislands. After the combination of gold nanoislands and CdSSe nanobelt, the difference in Fermi levels between them results in the transfer of electrons from CdSSe nanobelt to Au nanoislands, thus forming an internal electric field at the interface, which was directed from CdSSe nanobelt to Au nanoislands. Under illumination, the electrons in the Au nanoislands acquire enough energy to jump over the Schottky barrier because of localized surface plasmon resonance. These photoexcited hot electrons were trapped and stored in extra energy levels above the conduction band minimum, and then were cool down to the band edge, thus realizing the electron transfer from Au nanoislands to CdSSe nanobelt. Moreover, the internal electric field also greatly promoted the transfer of hot electrons from Au nanoislands to CdSSe nanobelt and inhibited the recombination of carriers at the interface, resulting in large photocurrent. Our works provide an effective strategy for the fabrication of high-performance photodetectors without increasing the device area.
  • [1]

    Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034

    [2]

    An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952

    [3]

    Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366

    [4]

    Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986

    [5]

    Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907

    [6]

    Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244

    [7]

    Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416

    [8]

    Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795

    [9]

    Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161

    [10]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175

    [11]

    Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016

    [12]

    Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231

    [13]

    Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521

    [14]

    Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153

    [15]

    Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372

    [16]

    Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325

    [17]

    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220

    [18]

    Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959

    [19]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793

    [20]

    Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083

    [21]

    Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387

    [22]

    Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844

    [23]

    Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171

    [24]

    Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887

    [25]

    Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479

    [26]

    Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204

    [27]

    Halas N J 2010 Nano Lett. 10 3816

    [28]

    Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859

    [29]

    Guan Y D 2022 Ph. D. Dissertation (Changchun:Jilin University) (in Chinese) [管昱多2022博士学位论文(长春:吉林大学)]

    [30]

    Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A. 216 23

    [31]

    Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103

    [32]

    Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700

    [33]

    Baek S W,Park G,Noh J,Cho C,Lee C H,Seo M K,Song H,Lee J Y 2014 Acs Nano 8 3302

    [34]

    Notarianni M,Vernon K,Chou A,Aljada M,Liu J Z,Motta N 2014 Sol. Energy 106 23

    [35]

    Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127

    [36]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282

    [37]

    Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031

    [38]

    Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440

    [39]

    Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641

    [40]

    Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191

    [41]

    Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319

    [42]

    Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161

    [43]

    Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329

    [44]

    Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845

    [45]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927

    [46]

    Li W, Valentine J 2014 Nano Lett. 14 3510

    [47]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi (b)15 627

    [48]

    Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053

    [49]

    Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752

    [50]

    Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786

    [51]

    An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 72 6 214

    [52]

    Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181

    [53]

    Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477

    [54]

    Di T,Cheng B,Ho W,Yu J,Tang H 2019 Appl. Surf. Sci. 470 196

    [55]

    Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017

    [56]

    Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108

    [57]

    Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761

    [58]

    Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192

    [59]

    Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939

    [60]

    Li H C 2018 M. S. Dissertation (Kunming:Yunnan Normal University) (in Chinese)[李含春2018硕士学位论文(昆明:云南师范大学)]

    [61]

    Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330

  • [1] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, doi: 10.7498/aps.72.20222303
    [2] 孙雪, 黄锋, 刘桂雄, 苏子生. 纳米成核点辅助结晶对钙钛矿光电探测器性能的影响. 物理学报, doi: 10.7498/aps.71.20220189
    [3] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [4] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, doi: 10.7498/aps.71.20212143
    [5] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化. 物理学报, doi: 10.7498/aps.70.20211230
    [6] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [7] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, doi: 10.7498/aps.70.20210138
    [8] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.69.20191960
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, doi: 10.7498/aps.69.20191526
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [11] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质. 物理学报, doi: 10.7498/aps.67.20180909
    [12] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, doi: 10.7498/aps.67.20180502
    [13] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, doi: 10.7498/aps.66.198502
    [14] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, doi: 10.7498/aps.66.237801
    [15] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, doi: 10.7498/aps.64.245201
    [16] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究. 物理学报, doi: 10.7498/aps.61.057201
    [17] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, doi: 10.7498/aps.61.248502
    [18] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, doi: 10.7498/aps.59.6532
    [19] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, doi: 10.7498/aps.59.4524
    [20] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应. 物理学报, doi: 10.7498/aps.56.7219
计量
  • 文章访问数:  83
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2023-03-16

基于Au纳米岛修饰的CdSSe纳米带光电探测器

  • 1 云南师范大学物理与电子信息学院, 昆明 650500;
  • 2 云南省光电信息技术重点实验室, 昆明 650500;
  • 3 可再生能源材料先进技术与制备教育部重点实验室, 昆明 650500

摘要: 三元合金CdSxSe1-x兼具CdS和CdSe的物理性质,其带隙可以通过改变元素的组分来调节。该合金具有优异的光电性能,在光电器件方面具有潜在的应用价值。本文首先通过热蒸发法制备了单晶CdS0.42Se0.58纳米带器件,在550 nm光照及1 V偏压下,器件的光电流与暗电流之比为1.24×103,光响应度达60.1 A/W,外量子效率达1.36×104%,探测率达2.16×1011Jones,其上升/下降时间约为41.1/41.5 ms。其次,通过Au纳米岛修饰该CdS0.42Se0.58纳米带后,器件的光电性能显著提升,在550 nm光照及1 V偏压下,器件的光开关比、响应度、外量子效率及探测率分别提高了5.4倍、11.8倍、11.8倍和10.6倍,并且上升/下降时间均缩短了近一半。最后基于Au纳米岛的局域表面等离子共振解释了器件光电性能增强的微观物理机制,为在不增加器件面积的前提下,制备高性能光电探测器提供了一种有效策略。

English Abstract

目录

    /

    返回文章
    返回