搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶的制备及形成过程

陈雪莲 焦琥珀 申岩冰 潘喜强

引用本文:
Citation:

高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶的制备及形成过程

陈雪莲, 焦琥珀, 申岩冰, 潘喜强

Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase

Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang
PDF
HTML
导出引用
  • 通过配体后处理法向CsPbBr3 钙钛矿纳米晶中加入油胺-十四烷基膦酸(OLA-TDPA)的混合配体获得了CsPbBr3-Cs4PbBr6混合材料. 在最佳比例下(CsPbBr3, TDPA与OLA的物质的量的比为1∶1∶15)制备的CsPbBr3-Cs4PbBr6钙钛矿纳米晶混合相的光致发光量子产率可达78%, 荧光寿命长达476 ns, 且其在室温环境下保持稳定性至少25 d, 在293 K和328 K之间的5个加热-冷却循环中具有良好的热稳定性. 混合纳米晶的形成经历了表面钝化/溶解和重结晶两个阶段: 在第1阶段(t ≤ 1 h), OLA-TDPA混合配体形成了(RNH3)2PO3 X型配体与纳米晶表面发生配体交换, 交换后的新配体能与纳米晶表面的Pb2+紧密的结合且含量较高, 降低了纳米晶表面的缺陷态密度, 提高了CsPbBr3类球形钙钛矿纳米晶的量子产率和荧光寿命; 在第2阶段, 由于部分PbBr2脱离CsPbBr3 NCs而使其发生了重结晶, 生成了少量六方相Cs4PbBr6纳米晶, 最终获得CsPbBr3和Cs4PbBr6双相共存的纳米晶, 从而提高了纳米晶的稳定性. 本工作对推动高效稳定的钙钛矿纳米晶的应用具有一定参考价值.
    CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are prepared by adding the mixture ligand of oleylamine and tetradecyl-phosphonic acid (OLA-TDPA) to CsPbBr3 perovskite nanocrystals through ligand post-treatment. The structure, the morphology, optical property and the stability of CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are characterized by X-ray diffraction, transmission electron microscopy (high-resolution TEM), UV-vis spectrophotometer, fluorescence spectrophotometer, and transient fluorescence spectrophotometer. The as-obtained nanocrystals have a high photoluminescence quantum yield of 78% and long fluorescence lifetime of 476 ns when prepared at the optimal molar ratio of CsPbBr3, TDPA and OLA (1∶1∶15). Moreover, the nanocrystal is quite stable at room temperature for at least 25 days, and has a good thermal stability in five heating-cooling cycles at temperature in a range between 293 K and 328 K. The formation of dual-phase nanocrystals go through two stages of surface passivation/dissolution and recrystallization to generate CsPbBr3-Cs4PbBr6 nanocrystals. In the first stage (t ≤ 1 h), the m OLA-TDPA mixing ligand can form (RNH3)2PO3 X type ligand and exchanges with [RNH3]+-[RCOO] at the surface of CsPbBr3 nanocrystals, which can effectively passivate surface defects by strong interaction with Pb2+ and high ligand content at surface, thus improving the quantum yield and fluorescence life of CsPbBr3 nanocrystals with spherical shape. In the second stage, with the increase of reaction time, PbBr2 partially dissolves from the surface of CsPbBr3 nanocrystals, then some CsPbBr3 nanocrystals transform into lead-depleted Cs4PbBr6 nanocrystals with hexagonal phase, thus improving the stability of nanocrystals. This work has a certain reference value for promoting the applications of high efficient and stable perovskite nanocrystals.
      通信作者: 陈雪莲, chenxl@xsyu.edu.cn ; 潘喜强, pxq2336@163.com
    • 基金项目: 国家自然科学基金(批准号: 62104191)和西安石油大学研究生创新与实践能力培养计划(批准号: YCS21112073)资助的课题.
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn ; Pan Xi-Qiang, pxq2336@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191) and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS21112073).
    [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • 图 1  CsPbBr3 NCs和OLA-TDPA-PNCs的 X 射线衍射图

    Fig. 1.  X-ray diffraction patterns of CsPbBr3 NCs and OLA-TDPA-PNCs.

    图 2  CsPbBr3 NCs的TEM图像(a)及其对应的HRTEM图(b); OLA-TDPA-PNCs 的TEM图像(c)及其对应的HRTEM图(d)和(e)

    Fig. 2.  TEM image of CsPbBr3 NCs (a) and the corresponding HRTEM image (b); TEM image of OLA-TDPA-PNCs (c) and the corresponding HRTEM images (d) and (e).

    图 3  (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)

    Fig. 3.  (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.

    图 4  (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化

    Fig. 4.  Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).

    图 5  OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs和CsPbBr3 NCs的FTIR光谱 (a) 800—1800 cm–1; (b) 2000—3500 cm–1

    Fig. 5.  FTIR spectra of OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs and CsPbBr3 NCs at 800–1800 cm–1 (a) and (b) 2000–3500 cm–1

    图 6  OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱

    Fig. 6.  Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).

    图 7  OLA-TDPA- PNCs随时间变化的光学监测 (a) UV-vis吸收光谱; (b)荧光光谱, 内插图为纳米晶在1—96 h间的荧光光谱图

    Fig. 7.  Optical monitoring of the OLA-TDPA- PNCs over time: (a) UV-vis absorption spectra; (b) PL spectra, inset shows the PL spectra of OLA-TDPA- PNCs between 1 and 96 h.

    表 1  CsPbBr3 NCs和OLA-TDPA-PNCs的荧光寿命拟合

    Table 1.  Lifetime and fractional contribution of different decay channels for samples of CsPbBr3 NCs and OLA-TDPA-PNCs.

    Sampleτ1/nsτ2/nsτ3/nsKnr/(106 s–1)Kr/(106 s–1)Knr/Krτavg/nsPLQY/%
    CsPbBr3 NCs6.8342.13277.425.480.975.6515515
    OLA-TDPA-PNCs12.5679.07824.810.471.640.2947678
    下载: 导出CSV
  • [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 陈雪莲, 申岩冰, 袁芝聪, 李恺瑞, 潘喜强. 简便合成相可调的CsPbBr3-Cs4PbBr6复合纳米晶及相转变过程的原位研究. 物理学报, 2024, 73(9): 096801. doi: 10.7498/aps.73.20240247
    [4] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究. 物理学报, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [6] 孙雪, 黄锋, 刘桂雄, 苏子生. 纳米成核点辅助结晶对钙钛矿光电探测器性能的影响. 物理学报, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [7] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁. 形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究. 物理学报, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [9] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [10] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [11] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211585
    [12] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [13] 刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟. 强电负性配体诱导CsPbBr3纳米晶蓝光出射. 物理学报, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [14] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [15] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [16] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] 刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云. 钙钛矿APbI3结构稳定性及光电性质的理论研究. 物理学报, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [18] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [20] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 物理学报, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
计量
  • 文章访问数:  4779
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-03-22
  • 上网日期:  2023-04-06
  • 刊出日期:  2023-05-05

/

返回文章
返回