搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化

高建华 黄旭光 梁作堂 王群 王新年

引用本文:
Citation:

强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化

高建华, 黄旭光, 梁作堂, 王群, 王新年

Spin-orbital coupling in strong interaction and global spin polarization

Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian
PDF
HTML
导出引用
  • 在非对心相对论重离子碰撞中, 参与反应的原子核物质系统具有巨大的初始轨道角动量, 经过强相互作用的自旋-轨道耦合, 这一巨大的轨道角动量可以转化为产生的夸克-胶子等离子体的整体极化. 整体极化效应在理论上提出后, 首先被美国布鲁克海文国家实验室的相对论重离子对撞机上的STAR实验所证实, 激发了人们对相关问题的研究, 成为重离子碰撞物理研究的一个新方向—重离子碰撞自旋物理. 本文简单回顾了整体极化原始基本思想、理论计算体系与主要结果以及近几年的理论进展.
    In non-central relativistic heavy ion collisions, the colliding nuclear system possesses a huge global orbital angular momentum in the direction opposite to the normal of the reaction plane. Due to the spin-orbit coupling in strong interaction, such a huge orbital angular momentum leads to a global spin polarization of the quark matter system produced in the collision process. The global polarization effect in high energy heavy ion collisions was first predicted theoretically and confirmed by STAR experiments at the Relativistic Heavy Ion Collider in Brookhaven National Laboratory. The discovery has attracted much attention to the study of spin effects in heavy ion collision and leads to a new direction in high energy heavy ion physics—Spin Physics in Heavy Ion Collisions. In this paper, we briefly review the original ideas, the calculation methods, the main results and recent theoretical developments in last years. First, we present a short discussion of the spin-orbit coupling which is an intrinsic property for a relativistic fermionic quantum system. Then we review how the global orbital angular momentum can be generated in non-central heavy ion collisions and how the global orbital angular momentum can be transferred to the local orbital angular momentum distribution in two limit model---Landan fireball model and Bjorken scaling model. After that, we review how we can describe the scattering process with initial local orbital angular momentum in the formalism of scattering cross section in impact parameter space and how we calculate the polarization of the quarks and antiquarks in quark gluon plasma produced in non-central heavy ion collisions after single or multiple scattering. We also give a brief review on how the global polarization can be predicted from the formalism of relativistic hydrodynamics with the generalized Cooper-Frye formula with spin. Finally, we discuss how the quark's polarization can be transferred to the final hadron's polarization. We focus on the hyperon's polarization and vector meson's spin alignment produced in heavy-ion collisions.
      通信作者: 高建华, gaojh@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11890710, 11890713, 11890714, 12175123, 12225502, 12075061, 12147101, 12135011)、国家重点研发计划(批准号: 2022YFA1604900)、上海市自然科学基金(批准号: 20ZR1404100)和U.S. DOE (批准号: DE-AC02-05CH11231)资助的课题
      Corresponding author: Gao Jian-Hua, gaojh@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890710, 11890713, 11890714, 12175123, 12225502, 12075061, 12147101, 12135011), the National Key R&D Program of China (Grant No. 2022YFA1604900), the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1404100), and the U.S. DOE (Grant No. DE-AC02-05CH11231)
    [1]

    Adamczyk L, et al. [STAR Collaboration] 2017 Nature 548 62

    [2]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [3]

    Abdallah M, et al. [STAR Collaboration] 2023 Nature https://doi.org/10.1038/s41586-022-05557-5, [arXiv: 2204.02302[hep-ph]]

    [4]

    Liang Z T 2007 J. Phys. G 34 S 323

    [5]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [6]

    Liang Z T, Lisa M A, Wang X N 2020 Nucl. Phys. News 30 10Google Scholar

    [7]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [8]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [9]

    Becattini F, Liao J, Lisa M 2021 Lect. Notes Phys. 987

    [10]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [11]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [12]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502 (in Chinese)

    [13]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [14]

    Gao J H 2007 HEPNP 31 1181

    [15]

    Chen S W, Deng J, Gao J H, Wang Q 2009 Front. Phys. China 4 509Google Scholar

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [18]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [19]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [20]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shoy Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta Phys. Sin. Accepted (in Chinese)

    [21]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [22]

    Baum G, et al. [SLAC E80] 1980 Phys. Rev. Lett. 45 2000

    [23]

    Baum G, et al. [SLAC E130] 1983 Phys. Rev. Lett. 51 1135

    [24]

    Ashman J, et al. [European Muon Collaboration] 1988 Phys. Lett. B 206 364

    [25]

    Ashman J, et al. [European Muon Collaboration] 1989 Nucl. Phys. B 328 1

    [26]

    Aidala C A, Bass S D, Hasch D, Mallot G K 2013 Rev. Mod. Phys. 85 655Google Scholar

    [27]

    Bjorken J D 1983 Phys. Rev. D 27 140

    [28]

    Levai P, Muller B, Wang X N 1995 Phys. Rev. C 51 3326Google Scholar

    [29]

    Wang X N, Gyulassy M 1991 Phys. Rev. D 44 3501Google Scholar

    [30]

    Wang X N 1997 Phys. Rep. 280 287Google Scholar

    [31]

    Brodsky S J, Gunion J F, Kuhn J H 1977 Phys. Rev. Lett. 39 1120Google Scholar

    [32]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [33]

    Gyulassy M, Wang X N 1994 Nucl. Phys. B 420 583Google Scholar

    [34]

    Weldon H A 1982 Phys. Rev. D26 1394

    [35]

    Heiselberg H, Wang X N 1996 Nucl Phys. B462 389

    [36]

    Biro T S, Muller B 1993 Nucl. Phys. A 561 477Google Scholar

    [37]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [38]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

    [39]

    Fu B, Xu K, Huang X G, Song H 2021 Phys. Rev. C 103 024903Google Scholar

    [40]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [41]

    Xia X L, Li H, Huang X G, Huang H Z 2019 Phys. Rev. C 100 014913Google Scholar

    [42]

    Becattini F, Cao G, Speranza E 2019 Eur. Phys. J. C 79 741Google Scholar

    [43]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [44]

    Lee T D, Yang C N 1957 Phys. Rev. 108 1645Google Scholar

    [45]

    Gatto R 1958 Phys. Rev. 109 610Google Scholar

    [46]

    Ackerstaff K, et al. [OPAL Collaboration] 1997 Phys. Lett. B 412 210

    [47]

    Abreu P, et al. [DELPHI Collaboration] 1997 Phys. Lett. B 406 271

    [48]

    Xu Q H, Liu C X, Liang Z T 2001 Phys. Rev. D 63 111301Google Scholar

    [49]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [50]

    Pang L G, Petersen H, Wang Q Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [51]

    Xia X L, Li H, Tang Z B, Wang Q 2018 Phys. Rev. C 98 024905Google Scholar

    [52]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [53]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2205.15689[nucl-th]

    [54]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2206.05868[hep-ph]

    [55]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005 [Erratum: 2022 Phys. Rev. D 105 099903]

    [56]

    Abelev B I, et al. [STAR] 2007 Phys. Rev. C 76, 024915 [Erratum: 2017 Phys. Rev. C 95, 039906]

    [57]

    Adam J, et al. [STAR] 2018 Phys. Rev. C 98 014910

    [58]

    Adam J, et al. [STAR] 2019 Phys. Rev. Lett. 123 no.13, 132301

    [59]

    Acharya S, et al. [ALICE] 2020 Phys. Rev. C 101 044611 [erratum: 2022 Phys. Rev. C 105, 029902]

    [60]

    Adam J, et al. [STAR] 2021 Phys. Rev. Lett. 126 162301

    [61]

    Liang Z T 2022 arXiv: 2203.09786

    [62]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [63]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [64]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

  • 图 1  非对心碰撞示意图 [2]

    Fig. 1.  Illustration of non-central heavy-ion collisions[2]

    图 2  整体轨道角动量与碰撞参数的关系 [13]

    Fig. 2.  Global orbital angular momentum as a function of the impact parameter [13]

    图 3  归一化后的平均部分子纵向动量分布 [13]

    Fig. 3.  The average longitudinal momentum distribution[13]

    图 4  归一化后的快度分布函数 $f_{\rm{p}}(Y, x, b, \sqrt{s})$ [13]

    Fig. 4.  Normalized rapidity distribution $f_{\rm{p}}(Y, x, b, $$ \sqrt{s})$ [13]

    图 5  平均快度沿横向方向的分布$ \langle Y\rangle $ [13]

    Fig. 5.  Average rapidity distribution $ \langle Y\rangle $ as a function of the transverse coordinate [13]

    图 6  夸克极化度$ –P_q $$ \alpha_s $$ \sqrt{\hat{s}}/T $的依赖关系 [13]

    Fig. 6.  Quark polarization $ –P_q $ as a function of $ \sqrt{\hat{s}}/T $ for different $ \alpha_s $’s[13]

    图 7  非对心重离子碰撞中夸克整体极化示意图[9]

    Fig. 7.  Illustration of the global quark polarization in non-central heavy-ion collisions [9]

    图 8  夸克极化度 $ P=\Delta\sigma/\sigma $随时间的演化[16]

    Fig. 8.  Quark polarization $ P=\Delta\sigma/\sigma $ as a function of time[16]

    图 9  $ \Lambda $超子整体自旋极化的能量依赖[39]

    Fig. 9.  $ \Lambda $ global polarization as a function of collision energy[39]

    图 10  超子$\Lambda,\; \Xi^-$$ \Omega^- $的整体极化的理论计算结果与实验结果的比较. 左图未考虑强子衰变效应的贡献, 右图考虑了衰变效应的贡献[43]

    Fig. 10.  Theoretical calculation and comparison with experimental result for $ \Lambda, \;\Xi^- $ and $ \Omega^- $. The feed-down effect is taken into account in the left panel while not in the right panel[43]

    图 11  中心碰撞中矢量介子自旋排列随着方位角的变化[52]

    Fig. 11.  $ \rho_{00} $ as a function of $ \Delta \psi $ in central collisions[52]

    表 1  超子极化在夸克组合模型和碎裂模型的结果比较。在碎裂模型计算中参数$ n_s $$ f_s $分别表示夸克-胶子等离子体中和夸克碎裂过程产生的奇异夸克相对于上下夸克的丰度[2]

    Table 1.  Hyperon’s polarizaiton from quark combination or fragmentation mechanism. In the fragmentation calculation, $ n_s $ and $ f_s $ denote the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively[2]

    超子 $ \Lambda $ $ \Sigma^+ $ $ \Sigma^0 $ $ \Sigma^- $ $ \Xi^0 $ $ \Xi^- $
    组合 $ P_s $ $ \dfrac{4 P_u-P_s}{3} $ $ \dfrac{2(P_u+P_d)-P_s}{3} $ $ \dfrac{4 P_d-P_s}{3} $ $ \dfrac{4 P_s-P_u}{3} $ $ \dfrac{4 P_s-P_d}{3} $
    碎裂 $ \dfrac{n_sP_s}{n_s+2 f_s} $ $ \dfrac{4 f_sP_u-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{2 f_s(P_u+P_d)-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{4 f_sP_d-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{4 n_sP_s-f_sP_u}{3(2 n_s+f_s)} $ $ \dfrac{4 n_sP_s-f_sP_d}{3(2 n_s+f_s)} $
    下载: 导出CSV
  • [1]

    Adamczyk L, et al. [STAR Collaboration] 2017 Nature 548 62

    [2]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [3]

    Abdallah M, et al. [STAR Collaboration] 2023 Nature https://doi.org/10.1038/s41586-022-05557-5, [arXiv: 2204.02302[hep-ph]]

    [4]

    Liang Z T 2007 J. Phys. G 34 S 323

    [5]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [6]

    Liang Z T, Lisa M A, Wang X N 2020 Nucl. Phys. News 30 10Google Scholar

    [7]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [8]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [9]

    Becattini F, Liao J, Lisa M 2021 Lect. Notes Phys. 987

    [10]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [11]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [12]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502 (in Chinese)

    [13]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [14]

    Gao J H 2007 HEPNP 31 1181

    [15]

    Chen S W, Deng J, Gao J H, Wang Q 2009 Front. Phys. China 4 509Google Scholar

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [18]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [19]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [20]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shoy Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta Phys. Sin. Accepted (in Chinese)

    [21]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [22]

    Baum G, et al. [SLAC E80] 1980 Phys. Rev. Lett. 45 2000

    [23]

    Baum G, et al. [SLAC E130] 1983 Phys. Rev. Lett. 51 1135

    [24]

    Ashman J, et al. [European Muon Collaboration] 1988 Phys. Lett. B 206 364

    [25]

    Ashman J, et al. [European Muon Collaboration] 1989 Nucl. Phys. B 328 1

    [26]

    Aidala C A, Bass S D, Hasch D, Mallot G K 2013 Rev. Mod. Phys. 85 655Google Scholar

    [27]

    Bjorken J D 1983 Phys. Rev. D 27 140

    [28]

    Levai P, Muller B, Wang X N 1995 Phys. Rev. C 51 3326Google Scholar

    [29]

    Wang X N, Gyulassy M 1991 Phys. Rev. D 44 3501Google Scholar

    [30]

    Wang X N 1997 Phys. Rep. 280 287Google Scholar

    [31]

    Brodsky S J, Gunion J F, Kuhn J H 1977 Phys. Rev. Lett. 39 1120Google Scholar

    [32]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [33]

    Gyulassy M, Wang X N 1994 Nucl. Phys. B 420 583Google Scholar

    [34]

    Weldon H A 1982 Phys. Rev. D26 1394

    [35]

    Heiselberg H, Wang X N 1996 Nucl Phys. B462 389

    [36]

    Biro T S, Muller B 1993 Nucl. Phys. A 561 477Google Scholar

    [37]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [38]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

    [39]

    Fu B, Xu K, Huang X G, Song H 2021 Phys. Rev. C 103 024903Google Scholar

    [40]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [41]

    Xia X L, Li H, Huang X G, Huang H Z 2019 Phys. Rev. C 100 014913Google Scholar

    [42]

    Becattini F, Cao G, Speranza E 2019 Eur. Phys. J. C 79 741Google Scholar

    [43]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [44]

    Lee T D, Yang C N 1957 Phys. Rev. 108 1645Google Scholar

    [45]

    Gatto R 1958 Phys. Rev. 109 610Google Scholar

    [46]

    Ackerstaff K, et al. [OPAL Collaboration] 1997 Phys. Lett. B 412 210

    [47]

    Abreu P, et al. [DELPHI Collaboration] 1997 Phys. Lett. B 406 271

    [48]

    Xu Q H, Liu C X, Liang Z T 2001 Phys. Rev. D 63 111301Google Scholar

    [49]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [50]

    Pang L G, Petersen H, Wang Q Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [51]

    Xia X L, Li H, Tang Z B, Wang Q 2018 Phys. Rev. C 98 024905Google Scholar

    [52]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [53]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2205.15689[nucl-th]

    [54]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2206.05868[hep-ph]

    [55]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005 [Erratum: 2022 Phys. Rev. D 105 099903]

    [56]

    Abelev B I, et al. [STAR] 2007 Phys. Rev. C 76, 024915 [Erratum: 2017 Phys. Rev. C 95, 039906]

    [57]

    Adam J, et al. [STAR] 2018 Phys. Rev. C 98 014910

    [58]

    Adam J, et al. [STAR] 2019 Phys. Rev. Lett. 123 no.13, 132301

    [59]

    Acharya S, et al. [ALICE] 2020 Phys. Rev. C 101 044611 [erratum: 2022 Phys. Rev. C 105, 029902]

    [60]

    Adam J, et al. [STAR] 2021 Phys. Rev. Lett. 126 162301

    [61]

    Liang Z T 2022 arXiv: 2203.09786

    [62]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [63]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [64]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化. 物理学报, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [4] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [5] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析. 物理学报, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [6] 张善良, 邢宏喜, 王恩科. 相对论重离子碰撞中的喷注淬火效应. 物理学报, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
    [7] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应. 物理学报, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [8] 孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华. 重离子碰撞中QCD物质整体极化的实验测量. 物理学报, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [9] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [10] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [11] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [12] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [13] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [14] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [15] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [16] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [17] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [18] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射. 物理学报, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [19] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [20] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
计量
  • 文章访问数:  5397
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-22
  • 修回日期:  2023-02-12
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-05

/

返回文章
返回