搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯线缺陷局域形变对谷输运性质的影响

崔磊 刘洪梅 任重丹 杨柳 田宏玉 汪萨克

引用本文:
Citation:

石墨烯线缺陷局域形变对谷输运性质的影响

崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克

Influence of local deformation on valley transport properties in the line defect of graphene

Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke
PDF
HTML
导出引用
  • 石墨烯线缺陷在谷电子学中有非常重要的应用. 实验发现, 线缺陷附近存在局域形变. 当前研究普遍认为, 由于形变较小, 对近邻跳跃能的影响小于5%, 局域形变对谷输运性质的影响可以忽略不计. 基于第一性原理计算和非平衡格林函数方法, 本文研究了局域形变对两种不同构型线缺陷谷输运性质的影响. 结果发现, 对于58环线缺陷, 在较低能量下, 局域形变对谷隧穿系数的影响并不明显, 然而, 在较高能量下局域形变的影响非常明显, 谷隧穿系数最大值并没有随着能量升高而减小, 而是在很大能量范围内都保持不变. 进一步研究表明, 该效应是由与线缺陷相连的C—C键长发生改变造成的. 通过构建两个平行线缺陷, 可以在很大的角度范围内都实现100%谷过滤效果. 相比之下, 局域形变对57环线缺陷谷隧穿系数的影响非常小.
    The line defect of graphene has significant applications in valleytronics, which has received extensive attention in recent years. It is found experimentally that there exists local deformation around the line defect. Current studies generally believe that the influence of local deformation on the valley transport properties can be negligible, because the modifications to the nearest neighbour hopping energy is less than 5% under the small deformation. Based on the first-principles calculations and the non-equilibrium Green’s function method, we investigated the effect of local deformation on the valley transport properties of two different kinds of line defects, the 58 ring line defect and the 57 ring line defect. It is found that for the 58 ring line defect, the effect of local deformation on the valley transmission coefficient is not evident at lower energies. However, at higher energies, the impact of local deformation is obvious, and the maximum valley transmission coefficient does not decrease with increasing energy, but can be maintained 1 within a large energy range. In contrast, the influence of local deformation on the valley transmission coefficient of the 57 ring line defect indeed can be negligible, regardless of the level of energy. Further investigation indicates that the change of the C—C bond length connected to the two defect atoms in the 58 ring plays a key role in the transmission of the valley states across the line defect. If this part of the influence is not taken into account, the valley transmission coefficient is nearly unaffected by the local deformation. The valley state enters the right side of the line defect directly through the bond connected to the line defect, so the change in bond length connected to the line defect has a significant impact on the valley transmission. This special structure does not exist in the 57 ring, where the valley states will have to pass through a narrow region containing 57 ring to enter the right side of the line defect, resulting in different valley scattering phenomena. By constructing two parallel line defects, the 100% valley polarization can be achieved in a large angular range with the 58 ring line defect. The finding has important implications for the design of graphene line defect based valley filters.
      通信作者: 田宏玉, tianhongyu@lyu.edu.cn ; 汪萨克, IsaacWang@jit.edu.cn
    • 基金项目: 宿迁市重点实验室项目(批准号: M202109)、宿迁学院科研平台(批准号: 2021pt04)、国家自然科学基金(批准号: 12264059, 12004149)、山东省自然科学基金(批准号: ZR2022MA026, ZR2020QA062, ZR2023MA027)、江苏省自然科学基金(批准号: BK20211002)和江苏省“青蓝工程”资助的课题
      Corresponding author: Tian Hong-Yu, tianhongyu@lyu.edu.cn ; Wang Sa-Ke, IsaacWang@jit.edu.cn
    • Funds: Project supported by the Key Laboratory Project of Suqian City, China (Grant No. M202109), the Scientific Research Platform of Suqian University, China (Grant No. 2021pt04), the National Natural Science Foundation of China (Grant Nos. 12264059, 12004149), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022MA026, ZR2020QA062, ZR2023MA027), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211002), and the “Qinglan Project” of Jiangsu Province, China
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    廖天军, 杨智敏, 林比宏 2021 物理学报 70 227901Google Scholar

    Liao T J, Yang Z M, Lin B H 2021 Acta Phys. Sin. 70 227901Google Scholar

    [3]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar

    [4]

    Geim A, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172Google Scholar

    [6]

    Enoki T, Ando T 2020 Physics and Chemistry of Graphene (Graphene to Nanographene) (2nd Ed.) (Singapore: Jenny Stanford Publishing)

    [7]

    邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙 2017 物理学报 66 144204Google Scholar

    Deng F S, Sun Y, Liu Y H, Dong L J, Shi Y L 2017 Acta Phys. Sin. 66 144204Google Scholar

    [8]

    Fujita T, Jalil M B A, Tan S G 2010 Appl. Phys. Lett. 97 043508Google Scholar

    [9]

    Wang S K, Tian H Y, Sun M L 2023 J. Phys.: Condens. Matter 35 304002Google Scholar

    [10]

    Recher P, Nilsson J, Burkard G, Trauzettel B 2009 Phys. Rev. B 79 085407Google Scholar

    [11]

    Sekera T, Bruder C, Mele E J, Tiwari R P 2017 Phys. Rev. B 95 205431Google Scholar

    [12]

    Golub L E, Tarasenko S A, Entin M V, Magarill L I 2011 Phys. Rev. B 84 195408Google Scholar

    [13]

    Kelardeh H K, Saalmann U, Rost Jan M 2022 Phys. Rev. Res. 4 L022014Google Scholar

    [14]

    Wang S, Pratama F R, Ukhtary M S 2020 Phys. Rev. B 101 081414(RGoogle Scholar

    [15]

    Yazyev O V, Chen Y P 2014 Nat. Nanotechnol. 9 755Google Scholar

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [17]

    Komsa H P, Krasheninnikov A 2017 Adv. Electron. Mater. 3 1600468Google Scholar

    [18]

    Lahiri J, Lin Y, Bozkurt P, Oleynik Ivan I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [19]

    Jolie W, Murray C, Weiß P S, et al. 2019 Phys. Rev. X 9 011055Google Scholar

    [20]

    Lasek K, Li J F, Kolekar S, et al. 2021 Surf. Sci. Rep. 76 100523Google Scholar

    [21]

    Tian H Y, Ren C D, Wang S K 2022 Nanotechnology 33 212001Google Scholar

    [22]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806Google Scholar

    [23]

    Pulkin A, Yazyev O V 2016 Phys. Rev. B 93 041419Google Scholar

    [24]

    Chen J H, Autes G, Alem N, Gargiulo F, Gautam A, Linck M, Kisielowski C, Yazyev O V, Louie S G, Zettl A 2014 Phys. Rev. B 89 121407(RGoogle Scholar

    [25]

    Liu Y, Song J, Li Y, Liu Y, Sun Q F 2013 Phys. Rev. B 87 195445Google Scholar

    [26]

    Ren C D, Lu W T, Zhou B H, Li Y F, Li D Y, Wang S K, Tian H Y 2020 J. Phys.: Condens. Matter 32 365302Google Scholar

    [27]

    Du L, Ren C D, Cui L, Lu W T, Tian H Y, Wang S K 2022 Phys. Scr. 97 125825Google Scholar

    [28]

    Jiang L W, Lü X L, Zheng Y S 2011 Phys. Lett. A 376 136Google Scholar

    [29]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401Google Scholar

    [30]

    Wang S, Hung N T, Tian H, Islam M S, Saito R 2021 Phys. Rev. Appl. 16 024030Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558(RGoogle Scholar

    [32]

    Perdew J P, Burke K. Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Hao Y F, Wang L, Liu Y Y, Chen H, Wang X H, Tan C, Nie S, Suk J W, Jiang T F, Liang T F, Xiao J F, Ye W J, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar

    [34]

    Bharathi M S, Hao Y F, Ramanarayan H, Rywkin S, Hone J, Colombo L, Ruoff R S, Zhang Y W 2018 ACS Nano 12 9372Google Scholar

  • 图 1  (a)石墨烯58环线缺陷结构示意图, MN分别表示离线缺陷最近邻和次近邻形变区域. (b)石墨烯57环线缺陷结构示意图, 两条虚线之间区域是最小周期性单元, 图中C—C键长是通过第一性原理计算得到的, 线缺陷左右两侧键长关于对称轴对称. (c)无限大石墨烯58环线缺陷简化晶格模型, 虚线框表示一个超胞

    Fig. 1.  (a) Diagrammatic sketch for the 58 ring line defect of graphene, where M and N represent the nearest neighbor and next nearest neighbor deformation regions away from the line defect, respectively. (b) Diagrammatic sketch for the 57 ring line defect of graphene. The region between two neighbouring dotted lines is a unit cell. The C—C bond lengths were calculated using first-principles theory, they are symmetric with respect to the symmetry axis. (c) The simplified lattice model of the infinite graphene with 58 ring line defect, and the dashed box denotes a supercell

    图 2  不同费米能下K谷隧穿系数$T_K$随散射角α变化关系 (a)未考虑局域形变的影响; (b)考虑局域形变的影响. 右上角插图$T_{\rm{M}}$, $T_{\rm{N}}$$T_{{\rm{MN}}}$分别表示$E=0.1 t$时只考虑图1(a)中M区域, N区域以及MN区域形变的结果

    Fig. 2.  Transmission coefficient $T_K$ as a function of α for different Fermi energies: (a) Local deformations are not taken into account; (b) local deformations are taken into account. In the inset, $T_{\rm{M}}$, $T_{\rm{N}}$ and $T_{{\rm{MN}}}$ respectively represent the results of considering only the deformation in the M region, the N region and MN regions in Fig. 1(a) when $E=0.1 t$

    图 3  (a), (c)存在两个平行线缺陷时, 不同费米能下$K/K'$谷隧穿系数$T_{K/K'}$以及谷极化度P随散射角α变化关系; (b), (d)存在两个平行线缺陷时, 线缺陷之间距离W不同时$T_{K}$以及谷极化度P随散射角α的变化关系. 其中(a), (c)中两个线缺陷之间的距离为$W=10$, (b), (d)中费米能为$E=0.05 t$. 虚线/实线表示考虑/未考虑局域形变影响的结果. 两个线缺陷之间的距离W$\sqrt{3}a$为单位

    Fig. 3.  (a), (c) Transmission coefficients $T_{K/K'}$ and the valley polarization P as a function of α for different Fermi energies in the presence of two parallel line defects; (b), (d) transmission coefficients $T_{K}$ and the valley polarization P as a function of α for different width between the two line defects in the presence of two parallel line defects. The width between two line defects in panels (a) and (c) is $W=10$ and the Fermi energy in panels (b) and (d) is $E=0.05 t$. Dotted/solid lines correspond to the results of considering/without considering the influence of local deformations. The distance between the two line defects W is in units of $\sqrt{3}a$

    图 4  不同费米能下57环线缺陷K谷隧穿系数$T_K$随散射角α变化关系 (a)未考虑局域形变的影响; (b)考虑局域形变的影响

    Fig. 4.  Transmission coefficient $T_K$ in 57 ring line defect as a function of α for different Fermi energies: (a) Local deformations are not taken into account; (b) local deformations are taken into account

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    廖天军, 杨智敏, 林比宏 2021 物理学报 70 227901Google Scholar

    Liao T J, Yang Z M, Lin B H 2021 Acta Phys. Sin. 70 227901Google Scholar

    [3]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar

    [4]

    Geim A, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172Google Scholar

    [6]

    Enoki T, Ando T 2020 Physics and Chemistry of Graphene (Graphene to Nanographene) (2nd Ed.) (Singapore: Jenny Stanford Publishing)

    [7]

    邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙 2017 物理学报 66 144204Google Scholar

    Deng F S, Sun Y, Liu Y H, Dong L J, Shi Y L 2017 Acta Phys. Sin. 66 144204Google Scholar

    [8]

    Fujita T, Jalil M B A, Tan S G 2010 Appl. Phys. Lett. 97 043508Google Scholar

    [9]

    Wang S K, Tian H Y, Sun M L 2023 J. Phys.: Condens. Matter 35 304002Google Scholar

    [10]

    Recher P, Nilsson J, Burkard G, Trauzettel B 2009 Phys. Rev. B 79 085407Google Scholar

    [11]

    Sekera T, Bruder C, Mele E J, Tiwari R P 2017 Phys. Rev. B 95 205431Google Scholar

    [12]

    Golub L E, Tarasenko S A, Entin M V, Magarill L I 2011 Phys. Rev. B 84 195408Google Scholar

    [13]

    Kelardeh H K, Saalmann U, Rost Jan M 2022 Phys. Rev. Res. 4 L022014Google Scholar

    [14]

    Wang S, Pratama F R, Ukhtary M S 2020 Phys. Rev. B 101 081414(RGoogle Scholar

    [15]

    Yazyev O V, Chen Y P 2014 Nat. Nanotechnol. 9 755Google Scholar

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [17]

    Komsa H P, Krasheninnikov A 2017 Adv. Electron. Mater. 3 1600468Google Scholar

    [18]

    Lahiri J, Lin Y, Bozkurt P, Oleynik Ivan I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [19]

    Jolie W, Murray C, Weiß P S, et al. 2019 Phys. Rev. X 9 011055Google Scholar

    [20]

    Lasek K, Li J F, Kolekar S, et al. 2021 Surf. Sci. Rep. 76 100523Google Scholar

    [21]

    Tian H Y, Ren C D, Wang S K 2022 Nanotechnology 33 212001Google Scholar

    [22]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806Google Scholar

    [23]

    Pulkin A, Yazyev O V 2016 Phys. Rev. B 93 041419Google Scholar

    [24]

    Chen J H, Autes G, Alem N, Gargiulo F, Gautam A, Linck M, Kisielowski C, Yazyev O V, Louie S G, Zettl A 2014 Phys. Rev. B 89 121407(RGoogle Scholar

    [25]

    Liu Y, Song J, Li Y, Liu Y, Sun Q F 2013 Phys. Rev. B 87 195445Google Scholar

    [26]

    Ren C D, Lu W T, Zhou B H, Li Y F, Li D Y, Wang S K, Tian H Y 2020 J. Phys.: Condens. Matter 32 365302Google Scholar

    [27]

    Du L, Ren C D, Cui L, Lu W T, Tian H Y, Wang S K 2022 Phys. Scr. 97 125825Google Scholar

    [28]

    Jiang L W, Lü X L, Zheng Y S 2011 Phys. Lett. A 376 136Google Scholar

    [29]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401Google Scholar

    [30]

    Wang S, Hung N T, Tian H, Islam M S, Saito R 2021 Phys. Rev. Appl. 16 024030Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558(RGoogle Scholar

    [32]

    Perdew J P, Burke K. Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Hao Y F, Wang L, Liu Y Y, Chen H, Wang X H, Tan C, Nie S, Suk J W, Jiang T F, Liang T F, Xiao J F, Ye W J, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar

    [34]

    Bharathi M S, Hao Y F, Ramanarayan H, Rywkin S, Hone J, Colombo L, Ruoff R S, Zhang Y W 2018 ACS Nano 12 9372Google Scholar

  • [1] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [3] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [6] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [7] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究. 物理学报, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [8] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [10] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [11] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [12] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 物理学报, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [14] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [15] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [16] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [17] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [18] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [19] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [20] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究. 物理学报, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
计量
  • 文章访问数:  2427
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-06-08
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回